
Hackyeaster Write Up

.:' ':.

/ _ _ \

| |_| |_| |

| /\ |

\-. .-/

|\/vv\/|

°------°

Made by TheVamp

1

Table of Contents
Challenge 01 – Easy One .. 4

Task .. 4

Solution .. 4

Challenge 02 – Just Cruisin’ .. 5

Task .. 5

Solution .. 5

Challenge 03 – Bird’s Nest .. 6

Task .. 6

Task 2 ... 6

Solution 2 ... 6

Solution .. 7

Challenge 04 – Sound Check .. 8

Task .. 8

Solution .. 8

Challenge 05 – Play it again, Paul ... 10

Task .. 10

Solution .. 10

Challenge 06 – Going Up .. 11

Task .. 11

Solution .. 11

Challenge 07 – Wise Rabbit Once More ... 12

Task .. 12

Solution .. 12

Challenge 08 – Just Drive.. 13

Task .. 13

Solution .. 13

Challenge 09 – Brain Game .. 17

Task .. 17

Solution .. 17

Challenge 10 – Blueprint .. 19

Task .. 19

Solution .. 20

Challenge 11 – Twisted Disc ... 21

Task .. 21

Solution .. 22

2

Challenge 12 – Version Out Of Control... 24

Task .. 24

Solution .. 24

Challenge 13 – Fractal Fumbling .. 26

Task .. 26

Solution .. 27

Challenge 14 – P.A.L.M. .. 29

Task .. 29

Solution .. 29

Challenge 15 – Big Bad Wolf... 32

Task .. 32

Solution .. 32

Challenge 16 – Egg Coloring ... 34

Task .. 34

Solution .. 34

Challenge 17 – Bunny Hop ... 36

Task .. 36

Solution .. 36

Challenge 18 – Bug Hunter ... 38

Task .. 38

Solution .. 38

Challenge 19 – Assemble This .. 41

Task .. 41

Solution .. 41

Challenge 20 – Humpt’s Dump ... 44

Task .. 44

Solution .. 44

Challenge 21 – Crypto Council .. 46

Task .. 46

Solutions ... 47

Challenge 22 – Dumpster Diving .. 48

Task .. 48

Solution .. 49

Challenge 23 - Heizohack ... 50

Task .. 50

Solution .. 50

3

Challenge 24 – crunch.ly .. 54

Task .. 54

Solution .. 54

Web-Submission Bomb .. 58

4

Challenge 01 – Easy One

Task
As always, the first challenge is very easy. Even babies can solve this one!

Find the code and enter it in the Egg-O-Matic™ below! One word, all lowercase.

xt hex yhi dde nyy str

in gyy isy ymo lly cod

dl exy sox xsi mpl ey🚼

Solution
This is an easy one. Remove all yy, xy and then all x. The text is then “the hidden string is mollycoddle

so simple”. So “mollycoddle” is the answer.

5

Challenge 02 – Just Cruisin’

Task
Need a holiday? Book a cruise on our new flag ship!

Seek out the promotion code below (lowercase only, no spaces) and get a free welcome package!

Solution
After a lot of google searching, I found the following site: http://www.usps.org/f_stuff/sigflgs.html

The Flags are international Signal Flags, so let’s translate the flags:

EN?JO

Y?AFR

?ESHS

EABRM

EEZ1E

Some flags are not documented on the site, so I filled the gap with a question mark. If you only take

the letters you get “ENJOYAFRESHSEABRMEEZ1E”. It is not the solution, but sounds like “enjoy a

fresh sea breeze”! The solution is “enjoyafreshseabreeze”. Maybe the flag signal guy drunk to much

rum :D

http://www.usps.org/f_stuff/sigflgs.html

6

Challenge 03 – Bird’s Nest

Task
This is a mobile challenge. Check it out in the Hacky Easter app!

Wait, what? No way! I need a smartphone? I have no money for that 

Task 2
Reverse the APK and get the Task description!

Solution 2
OK, first of all, we need the APK file. We have the link to the google store:

http://play.google.com/store/apps/details?id=ps.hacking.hackyeaster.android

Now we only need an online apk-downloader. I found the following on the internet:

 https://apps.evozi.com/apk-downloader/

 http://apkleecher.com/

In my case, I used apkleecher, because evozi was not available.

If you know a little bit about APK reverse engineering, you know that APK files are normal ZIP files.

You can unpack it out of the box. Within the assets folder I found a web-root, which contains all

Challenge files. For challenge 3 the following website is displayed:

http://play.google.com/store/apps/details?id=ps.hacking.hackyeaster.android
https://apps.evozi.com/apk-downloader/
http://apkleecher.com/

7

Solution
The little bird looks a little bit like the twitter bird. And the hashtags! A search on twitter after the

hashtags #nest #egg03 showed up the following tweet:

And if we follow the link, we get the egg #03

8

Challenge 04 – Sound Check

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03

write up.

Solution
If you have the app, you should hear a sound, if you press on “Start sound check”. The easiest way, to

find the frequency is another app, which analyses the frequency for you. I used in this case the app…

… *let’s look up in the app store* … …

OK, you don’t need such an app. You only need reversing for this task. In Challenge 03 I explained

how you get the APK. For analyzing the sources of the apk file you need the awesome Bytecode

Viewer an open source APK and Java Decompiling Tool!!!

But let us dive into the source code analysis. You find the code for the challenge in some

SoundActivity.class:

After a little bit of analyzing I found out, that the goal is in SoundActivity$2.class:

http://bytecodeviewer.com/
http://bytecodeviewer.com/

9

The important things happened from line 37 to 40. Load the base64 string from the resources.arsc,

and do some XOR magic. Let’s open the resources.arsc:

This is our base64 String. But you need to know, that after Í4Í4 the base64 string starts ;) Now I

wrote a little python script, which will produce the egg for challenge 04:

import base64

base64data = '''[base64 data]'''

nearimage = base64.b64decode(base64data)

imgfile = ""

for i,c in enumerate(nearimage):

 imgfile = imgfile + chr((i ^ ord(c))%256)

print imgfile

Now I start the python script with “python SoundActivity.py > egg04.png”. And that was it 

10

Challenge 05 – Play it again, Paul

Task
Do you know Paul? If not, it's about time to get to know him! Check out his video below!

Ĉu vi scias Paŭlo? Se ne, ĝi estas pri tempo ekkoni lin! Kontroli lian video sube!

[Here is an embedded video, you can watch the original here:

https://www.youtube.com/watch?v=Qgwr407AChs]

Solution
OK, a video? Let’s look at the source code:

The second sentence in the task is Esperanto. A look in that translation-file reveals maybe something:

Cool, there is the code.

https://www.youtube.com/watch?v=Qgwr407AChs

11

Challenge 06 – Going Up

Task

[This are the elevator button. And behind every number is a link to the floor]

Solution
If you read the source code, you notice that the link from the thirteenth floor is a little bit odd:

“sybbe=punatrzr” is in ROT13 “floor=changeme”. So I submitted the ROT13 of “floor=thirteen”

(“sybbe=guvegrra”):

12

Challenge 07 – Wise Rabbit Once More

Task
Wise Rabbit says:

The solution is in the solutions!

Go back and scroll to 123!

Solution
If you know wise rabbit from last year, he likes to play hide and seek. On the home page of

Hackyeaster (HE), you find the links to the solutions of the last years. The solution from 2015 is

exactly 123 pages big. A look on the last page reveals:

Damn you wise rabbit. This was hard to find! :D

But now I have the next egg:

13

Challenge 08 – Just Drive

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03

write up.

Solution
Hmm… Just Drive? OK, start the decompiler!

First I recommend to read Challenge 03 and Challenge 04. There is described how I get the APK and

which tool I use for the reverse-engineering process.

Before I begin to explain the reversing process, I must mention that the website, where I take the

screenshot for the task, automatically redirected to ps://rot?h= ! So I search for this link in the

source code. After a small look up I found the URL in the Activity.class:

So our task is internally called ROT. Let’s look up, if we found similar functions with the name ROT in

it.

“handleRot” seems to be our function. From line 86 to 157. But you see already, that you should

rotate your smartphone like a staring wheel. But I don’t have a smartphone, so no fun for me!

From line 119 to line 149 we have a big block which do the rotating checks:

14

You see some SHA1 values. Which represents the string of the rotation. The last SHA1 have only one

character, because of the substring-function. So you can do it by hand, bruteforce it or just google it:

4dc7c9ec434ed06502767136789763ec11d2c4b7 = “r”

The second hash have only 2 characters. substring(0,2) so it should be also easy to get this

one:

a8643e0e26d5ead82e73aae64966ca144f152d8a = “nr”

Ok, the rotation goes further on. I analyzed the script a little bit more and found out, that the SHA1

values are have only the characters “r”, “n” and “x” (see line 113 to 117). So you only have 3

rotations. With this knowledge I should be able to write a fast bruteforce script in python:

import hashlib

sha1values = ['4dc7c9ec434ed06502767136789763ec11d2c4b7',

 'a8643e0e26d5ead82e73aae64966ca144f152d8a',

 'f11fa81c0b72716bba0536dd34b9b0987af69b03',

 '3daee0c0bada99f5bf0866728fd78299acaafa15',

 'e8f235e79be9f8b13598b285a6fdaf2ac70a66ca',

 '58192f7d1263bd420efb788cc884a84f871239cf',

 '1ab9a97066f747c25d9c6a6b0fda647fae98cb98',

 '4692bd56dd3070f74b7e'

]

bs = "rnx"

ps = ""

for i in xrange(0,len(sha1values)):

 for c in bs:

 if hashlib.sha1(c+ps).hexdigest()[0:18] == sha1values[i][0:18]:

 ps = c + ps

 print ps + ":" + hashlib.sha1(ps).hexdigest()

 break;

And the results are the following:

15

So the solution is rnrxrxrn. But why I have a small part of a SHA1 hash in my source code? Because it

is in the reversed code as well:

OK but where is our egg? Maybe in the html-file, where the challenge is displayed. Yes, in the assets

folder within the web root you found challenge08.html. There is a scrambled egg. I figured already in

Challenge 11 out, how I can unscramble the scrambled eggs. Within the web-source-code is

another important fact:

It sends k as key, to unscramble the key. But what is k? A look back in the decompiled code said:

So you see, that k is the localObject, which is the SHA1 of our solution. So our key is

“4692bd56dd3070f74b7e81c6b2f69339b0fd6062”.

16

Here is the python code, to unscramble the egg:

from Crypto.Cipher import AES

from Crypto.Hash import MD5

import base64

sEgg'''[base64-code of scrambled Egg]'''

goal = '''iVBORw0KGgoAAAANS'''#PNG-Header

secret = "4692bd56dd3070f74b7e81c6b2f69339b0fd6062"

encoded = sEgg

encrypted = base64.b64decode(encoded)

salt = encrypted[8:16]

data = encrypted[16:]

try:

 def openssl_kdf(req):

 prev = ''

 while req>0:

 prev = MD5.new(prev+secret+salt).digest()

 req -= 16

 yield prev

 mat = ''.join([x for x in openssl_kdf(32+16)])

 key = mat[0:32]

 iv = mat[32:48]

 dec = AES.new(key, AES.MODE_CBC, iv)

 clear = dec.decrypt(data)

 if clear[:5] == goal[:5]:

 print base64.b64decode(clear)

except:

 nothing = ""

First put the base64 code into the script and the run “justdrive.py > justdrive.png”:

17

Challenge 09 – Brain Game

Task
What about a little brain game?

1. e4 e5 2. Nf3 Nc6 3. Bb5 Nf6 4. d3 Bc5 5. O-O d6 6. Nbd2 O-O 7. Bxc6 bxc6 8. h3 h6 9. Re1 Re8 10.

Nf1 a5 11. Ng3 Rb8 12. b3 Bb4 13. Bd2 Ra8 14. c3 Bc5 15. d4 Bb6 16. dxe5 dxe5 17. c4 Nh7 18. Qe2

Nf8 19. Be3 c5 20. Rad1 Qf6 21. Nh5 Qe7 22. Nh2 Kh7 23. Qf3 f6 24. Ng4 Bxg4 25. Qxg4 Red8 26.

Qf5+ Kh8 27. f4 Rxd1 28. Rxd1 exf4 29. Bxf4 Qe6 30. Rd3 Re8 31. Nxg7 Kxg7 32. Qh5 Nh7 33. Bxh6+

Kh8 34. Qg6 Qg8 35. Bg7+ Qxg7 36. Qxe8+ Qf8 37. Qe6 Qh6 38. e5 Qc1+ 39. Kh2 Qf4+ 40. Rg3 1-0

Solution
Hmm… the image looks like a chess game. If you google the hint at the bottom, you get to

http://www.365chess.com/news where many games are documented. A further google research

reveals it was a game at the “77th Tata Steel 2015 Round 9” between Carlsen,M and Radjabov, T.

http://www.365chess.com/news

18

So our binary code should look like this:

00000001

00100001

01001100

10101000

00100100

01000011

10000011

00000000

Now we must translate every row from top to bottom and from binary to int:

1-33-76-168-36-67-131-0

And this is our final solution :)

19

Challenge 10 – Blueprint

Task

Image from the Challenge with sample 2

20

Solution
First of all, this was my last challenge I solved. I found it really hard, if you don’t know what this is.

My first attempts was some terrible Math and some bruteforce things. So totally stupid stuff. After a

while I looked up the equation from the JavaScript in the source code in google. The formula looked

like this:

((y/17) / pow(2,(17*x)+(y%17)))% 2 > 0.5

Google said it is the Tupper’s self-referential formula! I must only find a website, where I can paint

the target plot. And indeed, there was this website: http://tuppers-formula.tk/

So I began to paint, and almost finished the word “Hacky”. For some reason, I wanted to see if it

worked on the HE-Site:

Damn you! So I painted It again, and this time right. The plot number is now:

176579492015814901528872625529774615508215478614638628392406643239116428074897541

681641793325671248874580950499668382723958388333354648532262931698930639856835422

348683939828636055448533804591049653503261373974416464862181695983478562079067833

614229059113869197437699759742373674003028861535476027091552243616865735457697656

105444429506238584383051262100293283222118456901855469818763894181110080508013645

884497726056403410392923221554648832542085467262023169013883606836051142881849628

64450110296056848249404578342545423849729556480

https://en.wikipedia.org/wiki/Tupper's_self-referential_formula
http://tuppers-formula.tk/

21

Challenge 11 – Twisted Disc

Task
You found a secret disc which conceals a secret password. Can you crack it?

Hint: Each ring of the disc holds one letter. The first letter sits on the outermost ring.

22

Solution
The first relevant point on this challenge is, to understand how the Egg-O-Matic works. Why? If we

understand how it worked, we can bruteforce everything offline.

If you analyze the source code, you see that the scrambledEgg (see Image above) is encrypted with

AES from crypto-js. After hours of research I found the equivalent decryption in python on

stackoverflow. So now can the challenge begin!

First of all, I wrote down all rings:

Ring0: "uueiyzybmvxgpjlcxnjqwoowqfdhilfrmgpsrtvkbeanstzkcda"

Ring1: "dfbkcooltqwreezymklcfdtvqhvsmrzxubuwxhappys"

Ring2: "lonkamuffyiolyumsschajdettcpidephjk"

Ring3: "chefpdopoefussycrlhuvidlyrv"

Ring4: "simpeljqninxmpelxjq"

Ring5: "kosfflaohlska"

Ring6: "eopllep"

Because we try to bruteforce the 7 character long password, we should first remove all double

characters, to improve the bruteforce speed. So here is the optimized python script:

import base64

from Crypto.Cipher import AES

from Crypto.Hash import MD5

sEgg='''[scrambledEgg]'''

goal = '''iVBORw0KGgoAAAANS'''#PNG Header Base64

ba = "abcdefghijklmnopqrstuvwxyz"

bb = "abcdefhklmopqrstuvwxyz"

bc = "acdefhijklmnopstuy"

bd = "cdefhiloprsuvy"

be = "eijlmnpqsx"

bf = "afhklos"

bg = "elop"

for a in ba:

 for b in bb:

 for c in bc:

 for d in bd:

 for e in be:

 for f in bf:

 for g in bg:

 secret = a+b+c+d+e+f+g

 encoded = sEgg

 encrypted = base64.b64decode(encoded)

 salt = encrypted[8:16]

 data = encrypted[16:]

 try:

 def openssl_kdf(req):

 prev = ''

 while req>0:

http://stackoverflow.com/questions/8806481/how-can-i-decrypt-something-with-pycrypto-that-was-encrypted-using-openssl

23

 prev =

MD5.new(prev+secret+salt).digest()

 req -= 16

 yield prev

 mat = ''.join([x for x in

openssl_kdf(32+16)])

 key = mat[0:32]

 iv = mat[32:48]

 dec = AES.new(key, AES.MODE_CBC, iv)

 clear = dec.decrypt(data)

 if clear[:5] == goal[:5]:

 print secret

 except:

 nothing = ""

The final answer is “hanisho” and here is the egg:

24

Challenge 12 – Version Out Of Control

Task

Solution
Yeah, it is a little git chall. First you must unzip the folder, change into the directory, and do a git

stash. This should be done like a thousand times, so I wrote a little bash script for that:

#!/bin/bash

for i in {1..999}

do

 unzip ./*.zip

 cd *

 git stash

done

OK, the script stopped at 722, because instead of a Zip file was an image in the Zip file!

A further investigation revealed, in zip 723 was the last valid unpacking, before the image within the

zip file appears. "Git whatschanged" shows that there are three commits. So let’s test the first

commit "git checkout 93d630215b9c5c49f2c7f3c6b9fe1b55efd93cd1". After

unpacking the zip, we got the same zips as before. So let’s try it from here again.

25

Another stop, damn. This time at the directory 0397! Within the folder was only this image (see

above). Checking out the branch in git: "git show-branch" ..., ok wrong branch: "git checkout blaster".

And unpacking again

Now my script stopped and ask for a password. Thx god it stand a few lines above. After this nothing

happened. Still unpacking without errors. On directory 0001 we got the egg :)

26

Challenge 13 – Fractal Fumbling

Task

The image is 9261 x 9261 pixel big! If you zoom in it looks like this:

27

Solution
OK for this QR-Fractal we need the following steps:

1. Get rid of that bunny, because it causes background noise and maybe the QR-reader can’t

read some of the QR-Codes

2. Read every QR-Code and save them in a list

3. Try every result from the generated list as password to unscramble the egg

 You know the unscrambled egg has a PNG header ;)

 Unscrambling eggs started at Challenge 11

Sounds easy, so here is my python source code:

from PIL import Image

from qrtools import QR

import PIL

import base64

from Crypto.Cipher import AES

from Crypto.Hash import MD5

img = Image.open("./wallpaper.jpg")

width, height = img.size

print "get rid of the bunny"

im = img.load()

for x in xrange(0,width):

 for y in xrange(0,height):

 if im[x,y][0] > 25 and im[x,y][1] > 25 and im[x,y][2] > 25:

 im[x,y] = (255,255,255)

print "create dictionary"

content = []

for x in xrange(0,width,21):

 for y in xrange(0,height,21):

 box = (x,y,x+21,y+21)#get 1 QR-Code

 omg = img.crop(box)#cut QR-Code out

 omg = omg.resize((84,84), PIL.Image.ANTIALIAS)#resize image

 omg.save("temp.jpg")#save it temporaly

 qr = QR(filename="temp.jpg")#read QR-Code

 if qr.decode():

 content.append(str(qr.data))#decoded QR-Code into dict

print "dict-attack"

goal = '''iVBORw0KGgoAAAANS'''#PNG-Header

sEgg = '''[scrambledEgg-base64]'''

for key in content:

 secret = key

 encoded = sEgg

 encrypted = base64.b64decode(encoded)

 salt = encrypted[8:16]

 data = encrypted[16:]

 try:

 def openssl_kdf(req):

 prev = ''

 while req>0:

 prev = MD5.new(prev+secret+salt).digest()

 req -= 16

 yield prev

 mat = ''.join([x for x in openssl_kdf(32+16)])

 key = mat[0:32]

 iv = mat[32:48]

 dec = AES.new(key, AES.MODE_CBC, iv)

28

 clear = dec.decrypt(data)

 if clear[:5] == goal[:5]:

 print secret

 except:

 nothing = ""

And the solution is “fractalsaresokewl”:

29

Challenge 14 – P.A.L.M.

Task

Solution
The first step is a little source code review:

So the function said User is “yolo” and password is “1337”, but below that is var _0x549b which is a

large line with the same checkEntries function. So it’s overwrite the first one. Let’s set some

breakpoints in Firebug:

After I pressed the Login-Button the script doesn’t stopped as it should, maybe there is another point

where the script is executed:

30

There are 2 hidden scripts. After setting some breakpoints and tried to login, the script breaked at

the breakpoint from challenge14.html@server1.conn0.source6858, but not at the second one. So

only the first script should be the right one. I extracted the script and beautified it with the

ScriptDeobfuscator from KahuSecurity. Here is the “beautiful” script:

function checkEntries() {

 var u=document.getElementById('puser').value;

 var p=document.getElementById('ppass').value;

 var used=[0,0,0,0,0,0,0,0,0,0];

 var ok=false;

 if(u==='elsa') {

 if(p>0&&p.length==10) {

 ok=true;for(i=1;i<=10;i++) {

 var digit=p.charAt(i-1);

 var part=p.substring(0,i);

 if(used[digit]!=0||part%i!=0) {

 ok=false

 }

 if(used[digit]==0) {

 used[digit]=1

 }

 }

 }

 }

 if(ok) {

 document.location.href='challenge14_'+u+'_'+p+'.html'

 }

 else {

 alert('nope')

 }

}

So the username is “elsa”. Now we only must find the right number. The number has a length of 10

and every digit may only be used once. I wrote a little python script, which generates some possible

numbers:

for x in xrange(123456788,10000000000):

 clist = list((str(x).zfill(10)))

 plist = set(clist)

 if len(plist) > 9:

 print ''.join(clist)

Executing “python palmgen.py > palm_codes.dic” and I get a little dictionary.

mailto:challenge14.html@server1.conn0.source6858

31

In the next phase, I re-implemented the Authentication Script from JavaScript to python and

bruteforced it with my dictionary:

print "loading all palmcodes..."

with open("./palm_codes.dic ") as f:

 content = f.read().splitlines()

print "try all palmcodes... valid palmcodes will be printed"

for l in content:

 c = list(l)

 part = ''

 cool = 1

 for i in xrange(1,11):

 part += str(c[i-1])

 if int(part)%i != 0:

 cool = 0

 break;

 if cool == 1:

 print ''.join(c)

After a while I got the first Code: 3816547290 and with that we have our next egg 

32

Challenge 15 – Big Bad Wolf

Task

Solution
I downloaded the pigs’ file, which is a “disk.img” file. I can extract the data easily with 7zip:

We know, that the pigs are hidden within an image, a sound and a text. First the image, I looked a

little bit in the properties and found immediately the second pig:

Now we look up at the text files. I found something suspicious in the story.txt:

33

What is all that noise with whitespaces and tab’s? I tried to decipher it manually, but it doesn’t

worked. After a little research on google, I came across this presentation. SNOW seems to be the

right candidate:

Now we need only the mp3 file. Listening and some basic analysis didn’t helped. Again after a little

google research on Stegano tools, I found a good list on Wikipedia. Maybe MP3Stego is the tool I

searched for. I found also a GUI for that tool :

For the passphrase I used nothing. An empty password. The output was a text file with the content

“pig 3: Wynchell”. We found the three pigs and got the next egg on this journey \o/

http://de.slideshare.net/saugatapalit/steganography-28604752
https://en.wikipedia.org/wiki/Steganography_tools

34

Challenge 16 – Egg Coloring

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03

write up.

Solution
Hmm… How could I get it? Only with reverse engineering!!! :D

First I recommend to read Challenge 03 and Challenge 04. There is described how I get the APK and

which tool I use for the reverse-engineering process.

First we have this time two classes to analyze:

The ColorActivity$1.class is not interesting. The only thing what it does is, to pass the values from a

spinner to the main-class. The Main-Class is more interesting:

As you see, we have an EGG_URL, a key, some codes and some SHA1-HMAC’s. The codes are the RGB

colors in hex. At the following site you can generate SHA1-HMAC’s:

http://www.freeformatter.com/hmac-generator.html. Here is the result one for the red color:

http://www.freeformatter.com/hmac-generator.html

35

It is the same code like in the source code. We need only the yellow egg. So it should be ffff00 and

the SHA1-HMAC from this hex-color. At line 26 is the URL we should use, to get the egg. So here is

the final URL: http://hackyeaster.hacking-

lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e

365a5f9

If we call the URL, we got the base64 encoded image. If you want to see the image, copy the whole

base64 string and type in your browser: “data:image/png;base64,[base64data]”. Replace

“[base64data]” with your copied base64 string. And done:

http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9
http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9
http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9

36

Challenge 17 – Bunny Hop

Task

Solution
After staring some minutes on the code I came up with an idea:

First there is a function:

window

to lineofeggs :cnt

 repeat cnt [egg hop 10]

 backhop 10

end

First the code creates a window. Second there is a function called “lineofeggs”. What I think it does

is, to print cnt times 10 pixel. “egg hop 10” means write a black pixel and jump to the next position.

At the end of the function is a “backhop”, which means the position of the bunny (pointer) goes

back. Within the code are more commands. “egg” for writing a pixel. “left” and “right” have every

time multiple of 90, so I think it is the rotation of the bunny (pointer). If the bunny starts from the

upper left corner, looking to the right side and the command right 90 comes up, after this command

the bunny should look down. With this assumptions I wrote an Interpreter:

from PIL import Image

import PIL

print "load bunny data"

with open('egg17.bunny') as f:

 content = f.read().splitlines()

#lineofeggs repeat x times: write pixel (egg) + go+1 in direction where you

look, after all go-1

#right rotate by x degrees to the right

#left rotate by x degrees to the left

#hop increase index by x in direction where you look

img = Image.new("RGB", (25,25), "white")#create image

pix = img.load()

#N,E,S,W = 0,1,2,3 (North, East, South, West)

look = 1 #first you looks east

x = 0

y = 0

37

#function for go in the right direction

def go(x,y):

 if look == 0:

 y -= 1

 elif look == 1:

 x += 1

 elif look == 2:

 y += 1

 elif look == 3:

 x -= 1

 return x,y

print "printing Image..."

for cmd in content:

 cmddata = cmd.split(" ")

 if cmddata[0] == "lineofeggs":

 for i in xrange(0,int(cmddata[1])):

 pix[x,y] = (0,0,0)#egg command

 x,y = go(x,y)#hop 10

 look = (look + 2) % 4#look backwards

 x,y = go(x,y)#jump jump 1 (backjump)

 look = (look + 2) % 4#and look forward again

 elif cmddata[0] == "hop":

 for i in xrange(0,(int(cmddata[1])/10)):

 x,y = go(x,y)#jump x times

 elif cmddata[0] == "right":

 rotate = int(cmddata[1])/90

 look = (look + rotate) % 4#rotate right

 elif cmddata[0] == "left":

 rotate = int(cmddata[1])/90

 look = (look - rotate) % 4 #rotate left

 elif cmddata[0] == "egg":

 pix[x,y] = (0,0,0)#print black pixel

 else:

 print "unknown command: " + cmd#in case of unknown cmd

img = img.resize((100,100))#resize Image

img.save("egg17.png")#save image

And here are the result:

The next QR-Code, which is egg 17.

38

Challenge 18 – Bug Hunter

Task

Solution
This time, we have a little C# project:

Let’s fix the Source Code of the Keygen Class:

Sammy! It said multiple of 1111!

Damn, Sammy 1000 iterations, not 999!

Sammy, I think you missed something here!

39

Sammy, I think you hate math, do you?

Yeah Sammy, boost to the hell of math.

Sammy, you don’t have a clue from programming, do you?

Sammy, how much coffee did you had today?

That should be all mistakes. Sammy! F-grade!

40

41

Challenge 19 – Assemble This

Task

Solution
We got a little assembly source code, which was generated right from a compiled c script. For better

analyzing the assembly, I compiled it with gcc:

First I renamed the txt to .s so that I can compile the assembly-source-code with gcc. I found a

stackoverflow article about this topic. After the compilation, I only need to link the assembly and I

am able to debug the application.

For an easier analysis I load the assembly in IDA and looked at the decompiled source code:

http://stackoverflow.com/questions/7190050/how-do-i-compile-the-asm-generated-by-gcc

42

I rewrote the source to python and simplify the whole code:

calc1 = 0

calc2tmp = 0

calc2=0

calc3 = 0

calc4 = 0

i=0

mystring = "123456789987654321"#test-input

inputvar = ord(mystring[0])

inputvar_1 = ord(mystring[0])

while 1:

 if(i == 3*(i/3)):

 calc3 += inputvar

 if (i&3==2):

 calc4 += inputvar

 i=i+1

 calc1 = inputvar_1%0x100

 calc2 = calc2tmp%0x100

 calc3 = calc3%0x100

 calc4 = calc4%0x100

 if i==16:

 break

 inputvar = ord(mystring[i])

 calc2tmp = calc2 + inputvar

 inputvar_1 = inputvar + calc1

 if (not(i&1)):

 calc2tmp = calc2

Seems a little bit complicated. I rewrote the code, so that I can solve it with z3:

from z3 import *

#input vector

s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15 = BitVecs('s0, s1,

s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15',32)

solver = Solver()

#only ASCII values from “ “ to “}”

solver.add(And(s0 >=32,s1 >=32,s2 >=32,s3 >=32,s4 >=32,s5 >=32,s6 >=32,s7

>=32,s8 >=32,s9 >=32,s10 >=32,s11 >=32,s12 >=32,s13 >=32,s14 >=32,s15

>=32))

solver.add(And(s0 < 126,s1 < 126,s2 < 126,s3 < 126,s4 < 126,s5 < 126,s6 <

126,s7 < 126,s8 < 126,s9 < 126,s10 < 126,s11 < 126,s12 < 126,s13 < 126,s14

< 126,s15 < 126))

#solver for calc1 to calc4

solver.add(0x85 == (s0 + s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10 +

s11 + s12 + s13 + s14 + s15)%0x100)

solver.add(0x43 == (s1 + s3 + s5 + s7 + s9 + s11 + s13 + s15)%0x100)

solver.add(0x4f == (s0 + s3 + s6 + s9 + s12 + s15)%0x100)

solver.add(0xb0 == (s2 + s6 + s10 + s14)%0x100)

if solver.check() == sat:

 m = solver.model()

 print m

else:

 print "nope"

43

After executing the script I got the following answer:

or in other words "ida.lo\/es.you". This is the password for the Egg-O-Matic:

44

Challenge 20 – Humpt’s Dump

Task

Solution
In this challenge we got a MySQL Dump. For better work I imported the dump in the following order

to a MySQL database:

1. humpty_routines.sql

2. humpty_uzr.sql

3. humpty_kee.sql

4. humpty_fyle.sql

After this I analyzed a little bit deeper the routines:

CREATE DEFINER=`root`@`localhost` PROCEDURE `GetPuzzMishMash`(

 IN p_puzz VARCHAR(40),

 IN p_sawlt VARCHAR(4),

 OUT p_mishmash VARCHAR(40)

)

BEGIN

 DECLARE p_tmp VARCHAR(50);

 SET p_tmp := CONCAT(p_sawlt, '.', p_puzz, '.', p_sawlt);

 SELECT SHA1(p_tmp) INTO p_mishmash;

END

That’s the function for the hash in the uzr-table. SHA1(salt.pwd.salt)! The puzz is also letters only and

8 chars are bruteforcable. So I tried to bruteforce the hashes with cudaHashcat.

Content of 2016hackyeaster.txt:

943f9ecbbd91306a561d0e3c15e18ee700007083:abcd

915d253cb5ba6f0a220bca83e2d6d3258af15e68:nmlk

1742ae4507fc480958e2437104e677e70aa5e857:jklm

0cf32f8f418659f23f8968d4f63ea5c98b39f833:zyxw

de2278f5bcafcbb097ecc1fb54e5ab8a9e912c55:efgh

Content of mask.txt

.?1.

.?1?1.

45

.?1?1?1.

.?1?1?1?1.

.?1?1?1?1?1.

.?1?1?1?1?1?1.

.?1?1?1?1?1?1?1.

.?1?1?1?1?1?1?1?1.

And with the following command I am able to crack the hash:

cudaHashcat64.exe -a 3 -m 4900 2016hackyeaster.txt -1 ?l?u mask.txt

With that I test all passwords from a-zA-Z with a length from 1 to 8 and they are beginning with a dot

in the beginning and in the end. After a while I got the following result:

0cf32f8f418659f23f8968d4f63ea5c98b39f833:zyxw:.snakeoil.

So our puzz is “snakeoil”. With that we can recover the key with the DeekryptKee function. With the

following MySQL-Query you get the Kee:

call

DeekryptKee('snakeoil','1ABF4B7CD25C61FDF0E74EC2BFB43BD1C2D8ECD803AFA3AA376

F4C0000052813', @KEE); select @KEE;

I got for the key the value “jpP8HeoEC5OCCBqdf9N3”. Now we can decrypt the file from the

database and save it. I used the following MySQL Query for that:

select aes_decrypt((select blahb from fyle where keeid=2332),

'jpP8HeoEC5OCCBqdf9N3') into dumpfile ‘egg.png'

In my MySQL Database folder I found the image:

46

Challenge 21 – Crypto Council

Task

Clever crypto brains had a little get-together. Find out who they are and break the riddles
they created! Each plain text contains a password - once you've got them all, enter them in
the Egg-O-Matic below. Lowercase only.

DV D UXOH PHQ ZRUUB PRUH DERXW ZKDW WKHB FDQW VHH
WKDQ DERXW ZKDW WKHB FDQ SDVVZRUG LV FDUWKDJR

4423154215 2443 3334 52244433154343 4334
1442151114214531 3334 11131345431542 4334
4415424224123115 1143 442315 13343343132415331315
44231144 145215313143 2433 442315 2315114244 3421
1551154254 321133 3515313435343333154315 2443 442315
3511434352344214

EHIIKT YFC FTEU QK PLTPWBY MQYTNVZW LAJ JGGN ZVLD A
EWTAE WIEXLP QF IHV DAALROW DF JIACT GWMGCRQF WIJ
NSIHVZ BTAE IJGAEOWS FFZ ZXM KW ZPVV I UAAJAARAC
MVJCRBADN ZV HPRZA TAAZAW SE MQYTNVZW HTLLATD XZWTK
RVV WESZWL UELWG AUZAPNLA LJREMTJS RVV YERV VDRRB SI
TYM SVE FN SVE JMNTNKMWC HV MFIEIMV IHV LAELFUSIIT
AWGVZKW PNU ZWBAZVWS TYMJT FFZ LWIIBQ NERZK UIMM
QTAIA ACTF PAH CRZWTR YM SRCFUHPNZMV IHV NJTNTP WCVFG
DDUZA SSHVUSG DV OJXGEIF IO KPW SIVB GU WFZEH AJ I BJNZWJ
HETZWIAIG ZT EEBWGEU BZT SVZNXCV WX IHV LMZE FN FTVVZK
PS YQK HETZWIAIG S EOJQLXOE PW WECL MCTZT LWE UMSIHJ WX
IHV LMZE RVV WIJ AGC HV IDHO JMJKEU IK P SVKJTTRZQ IO
YMFGY ZQA

WEN XQWVIBQZ KGQEAL TWB WEH GKQCW QLTBAKBTU LKIQTME
DWCOAKWZAKNB BKMETP WEW NOTHPA HWB GBXHCEWG IA
OTTQPWD SEATWCWNBA NZW HTO BHQWG HIWAL MCMG
LQWVIBQL TOF QLFVCHWG WEW XNW FM WET NGQEAL
QWBDSCMF KO CPWCKWMAX

47

Solutions
The first picture is Caesar. So a quick Caesar bruteforce attack reveals it is ROT23. It gives us the

following text:

AS A RULE MEN WORRY MORE ABOUT WHAT THEY CANT SEE THAN ABOUT WHAT

THEY CAN PASSWORD IS CARTHAGO

The second picture shows Polybios. I did a manual analysis of the Polybios-Crypto and got the

following results:

 |1 2 3 4 5

1|A B C D E

2|F _ _ I _

3|L M N O P

4|_ R S T U

5|V W X Y _

there is no witness so dreadful no accuser so terrible as the

conscience that dwells in the heart of every man peloponnese is the

password

The third picture shows Vigenère. Because I am lazy to do it manually, I bruteforced it online:

http://www.mygeocachingprofile.com/codebreaker.vigenerecipher.aspx

After looking in the messages, I found the right key at #38, which is “parisparis”. The deciphered text

ist:

phrase you need is alchemy vigenere was born into a noble family in

the village of saint pourcain his father jean arranged for him to

have a classical education in paris blaise de vigenere studied greek

and hebrew under adrianus turnebus and jean dorat at the age of age

seventeen he entered the diplomatic service and remained there for

thirty years five years into his career he accompanied the french

envoy louis adhemar de grignan to the diet of worms as a junior

secretary he entered the service of the duke of nevers as his

secretary a position he held until the deaths of the duke and his

son he also served as a secretary to henry iii

The last picture shows Playfair. This was little bit challenging, but after I read the history on

http://www.crosswordman.com/cgi-bin/playfair I tried the key “wheatstone”. And indeed it worked!

THE PLAYFAIR CIPHER WAS THE FIRST PRACTICAL DIGRAPH SUBSTITUTION

CIPHER THE SCHEME WAS INVENTED BY CHARLES WHEATSTONE BUT WAS NAMED

AFTER LORD PLAYFAIR WHO PROMOTED THE USE OF THE CIPHER PASSWORD IS

BLETCHLEY

With all bold words from the deciphered texts, you are able to get the egg:

http://www.mygeocachingprofile.com/codebreaker.vigenerecipher.aspx
http://www.crosswordman.com/cgi-bin/playfair

48

Challenge 22 – Dumpster Diving

Task

49

Solution
I researched some parts of the algorithm on google. It reveals it is SHA1, but h0-h1 are the magic

values are different. So I grapped the source code of oclHashcat and changed the

“include/constants.h” at line 62:

#define SHA1M_A 0x10325476u

#define SHA1M_B 0x98badcfeu

#define SHA1M_C 0xefcdab89u

#define SHA1M_D 0x67452301u

#define SHA1M_E 0x0f1e2d3cu

After this I compiled the source code and bruteforced with the following command:

oclHashcat64.exe -m 100 hashes_2016.txt -r rules\T0XlC.rule

E:\dict\eNtr0pY_ALL_sort_uniq.dic

You find eNtr0pY_ALL_sort_uniq.dic in an interesting Article on the internet 

After 6 Minutes everything was cracked ;)

http://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/

50

Challenge 23 - Heizohack

Task

Solution
Another steganography, another time for StegSolve! The most interesting parts are the Red 0, Blue 0

and Green 0 Channels. They mostly look like the same. Here is the Red 0 channel for example:

51

So I tried the Data Extract function from StegSolve:

After I saved the binary, I got the following Image:

52

In Stegsolve I noticed there are some differences at the top 3 pixel lines:

Another hint is within the image. Bit:r, MAC: r xor g xor b xor alpha == 1. So I wrote a little script,

which shows me every pixel with the condition “r xor g xor b xor alpha == 1”:

from PIL import Image

img = Image.open("r0g0b0_trim.png")

pix = img.load()

x,y = img.size

for bbb in xrange(0,3):

 for aaa in xrange(0,x):

 r,g,b,a = pix[aaa,bbb]

 vxor = r^g^b^a

 if (r^g^b^a)&1 == 1:

 print pix[aaa,bbb]

53

If you look at the red channel you noticed something familiar. If you replace 22 with a 0 and 23 with

an 1 you get a binary ASCII code! So I modified my script:

from PIL import Image

img = Image.open("r0g0b0_trim.png")

pix = img.load()

x,y = img.size

solution=""

for bbb in xrange(0,y):

 for aaa in xrange(0,x):

 r,g,b,a = pix[aaa,bbb]

 if (r^g^b^a)&1 == 1:

 #print pix[aaa,bbb]

 if r == 22:

 solution += "0"

 if r == 23:

 solution += "1"

decode = ""

for i in xrange(0,len(solution)/8):

 decode += chr(int(solution[(i*8):(i*8+8)],2))

print decode

And we got the next egg 

54

Challenge 24 – crunch.ly

Task

Solution
We got both functions, how Short URL got calculated and how Tickets are created. So at the first part

we need to recover the key. The full Key is 128 bit, so the normal key (128-1)/3=42bit! One Character

have 8bit, so we search for a key which is 5 chars long. This should be an easy task. First I tampered

the whole process of creating and saving a short URL. I got the following data with that:

url = "http://asdf.de"

shorturl = "TNUJJLQ"

encrypted_ticket =

"fUbbAKUKBsUgSFwl3C5ItfNjJPFOYfOVucpifACVzWB4PC+SXpSt/rwoMDEu7p8da4aJ9Jr0O1

wSqJ/FzCKHig=="

With that knowledge I am able to bruteforce the key. I re-implemented the cryptTicket function and

wrapped a bruteforce attack around that function:

import hashlib

import base64

from Crypto import Random

from Crypto.Cipher import AES

def pad(s):

 return s + b"\0" * (AES.block_size - len(s) % AES.block_size)

55

def encrypt(message, key, key_size=128):

 message = pad(message)

 iv = "hackyeasterisfun"

 cipher = AES.new(key, AES.MODE_CBC, iv)

 return cipher.encrypt(message)

def decrypt(ciphertext, key):

 iv = "hackyeasterisfun"

 cipher = AES.new(key, AES.MODE_CBC, iv)

 plaintext = cipher.decrypt(ciphertext)

 return plaintext.rstrip(b"\0")

iv = "hackyeasterisfun"

bs = "abcdefghijklmnopqrstuvwxyz0123456879ABCDEFGHIJKLMOPQRSTUVWXYZ"

url = "http://asdf.de"

shorturl = "TNUJJLQ"

encrypted_ticket =

"fUbbAKUKBsUgSFwl3C5ItfNjJPFOYfOVucpifACVzWB4PC+SXpSt/rwoMDEu7p8da4aJ9Jr0O1

wSqJ/FzCKHig=="

encdata = encrypt("test", KEY_FULL)

#print base64.b64encode(encdata)

print decrypt(encdata, KEY_FULL)

for a in bs:

 for b in bs:

 for c in bs:

 for d in bs:

 for e in bs:

 KEY = a + b + c+d+e

 #print KEY

 KEY_FULL = "x"+KEY+KEY+KEY

 plain = base64.b64encode(url)

 plain += "@" + base64.b64encode(shorturl)

 decoded = base64.b64decode(encrypted_ticket)

 txt = decrypt(decoded, KEY_FULL)

 #print txt

 if txt[:5] == plain[:5]:

 print KEY

Now we know that the key is “tKguF”. The next step is, that we need an URL that starts with

“http://evileaster.com” and the short URL is IU66SMI. After analyzing the calculateShortUrl function,

I noticed that IU66SMI is base64 and is the beginning of the sha256(url). For better understanding:

IU66SMI== is in hex 453de931

Sha256(“http://hackyeaster.hacking-lab.com”) is

453de9316a0d3ae749261bb891930b4561d4a99ee9eb462548bf0f868b079957

With that knowledge I was able to write another bruteforce script, to get the right

“http://evileaster.com” URL shortened. My approach was to append a numeric parameter like

“http://evileaster.com/?1234”.

56

import hashlib

import base64

shorturl = "IU66SMI="

hexcode = base64.b32decode(shorturl).encode('hex')

pre = "http://evileaster.com/?"

for i in xrange(0,9999999999999999):

 after = str(i)

 goal = hashlib.sha256(pre+after).hexdigest()[:8]

 if hexcode == goal:

 print pre + after

So I started the script and went to bed. At the next morning I got the following URLs

http://evileaster.com/?10691651141

http://evileaster.com/?12905523265

http://evileaster.com/?15399599367

http://evileaster.com/?17899621795

The right injection is within the saving process. With the following script I created my evileaster

ticket:

import hashlib

import base64

from Crypto import Random

from Crypto.Cipher import AES

def pad(s):

 return s + b"\0" * (AES.block_size - len(s) % AES.block_size)

def encrypt(message, key, key_size=128):

 message = pad(message)

 iv = "hackyeasterisfun"

 cipher = AES.new(key, AES.MODE_CBC, iv)

 return cipher.encrypt(message)

def decrypt(ciphertext, key):

 iv = "hackyeasterisfun"

 cipher = AES.new(key, AES.MODE_CBC, iv)

 plaintext = cipher.decrypt(ciphertext)

 return plaintext.rstrip(b"\0")

iv = "hackyeasterisfun"

KEY = "tKguF"

KEY_FULL = "x"+KEY+KEY+KEY

url = "http://evileaster.com/?10691651141"

#generate shorturl from url

shorturl_test = hashlib.sha256(url).hexdigest()[:8]

shorturl = "http://crunch.ly/" +

base64.b32encode(shorturl_test.decode('hex'))

shorturl = shorturl.replace("=", "")

#build ticketformat --> the last chars are padding for %16==0

#are there missing

plain = base64.b64encode(url)

plain += "@" + base64.b64encode(shorturl)

+"\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0f"

57

encdata64 = base64.b64encode(encrypt(plain, KEY_FULL))

encdata64 = encdata64[:128]

encdata64 = encdata64.replace("+", "%2B")#manual html encoding

encdata64 = encdata64.replace("/", "%2F")#manual html encoding

print encdata64 #print ticket

After getting the evileaster ticket I called the saving URL with the ticket:

http://hackyeaster.hacking-

lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%

2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOa

SVSlcI2WfztwfBCK1

I get a status code 0, which means the evil short URL is saved. Now I can go to the short URL >:D :

http://hackyeaster.hacking-

lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI

{

 "status": ?0,

 "url":

"http%3A%2F%2Fhackyeaster%2Ehacking%2Dlab%2Ecom%2Fhackyeaster%2Fimages%2Feg

g24%5FbHIrQh1VR141TPmapETM%2Epng"

}

And the final URL to the last egg is http://hackyeaster.hacking-

lab.com/hackyeaster/images/egg24_bHIrQh1VR141TPmapETM.png

http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg24_bHIrQh1VR141TPmapETM.png
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg24_bHIrQh1VR141TPmapETM.png

58

Web-Submission Bomb
After I saw, that there is possibility to submit eggs on the website, my first idea was: “Submit all egg’s

at 13:37”. For that mission I wrote a little python script. The first step was to read all QR-Codes:

from qrtools import QR

for i in xrange(1,25):

 qr = QR(filename="egg/egg"+format(i, "02d")+".png")

 if qr.decode():

 print str(i)+ " : " + qr.data

The Output was every QR-Code. After this I created a script for the time bomb and submitting all

eggs at 13:37:

import requests

import time

sEggs = ["1fQArOSgpdSCBr8zXove",#01

 "P2kVqrkD2ykiNcwWAAKv",#02

 "FUYEMZoOCLis7tPvs5pq",#03

 "dLYFunszMowTRHovQx2y",#04

 "X8pfJTkxJeRX0bMHZsTP",#05

 "mGMzyuWnqVnC014Irq5S",#06

 "3OgwkgZmzaFUvPBwnKr8",#07

 "B6gZYdONrcSnRlDlvQ03",#08

 "vgOObZR6VjxuwRkBVm2F",#09

 "QOXm6kvOYt3ATkc9rDnk",#10

 "wjlKxyRNWcLnyhdXhHCV",#11

 "kR4ZCgRneYR27YAYr8eE",#12

 "Jvl8olPUI9yfuJDWIJFi",#13

 "Qa5miycTGMkfXUe1iOeJ",#14

 "JMv1xX8LZGM0VspECD1b",#15

 "7dUDQDhMQkLYsQTMJq62",#16

 "nYa3ktAoTAQc6yxMAGoM",#17

 "83OHadUPAeWRfd6YBv6t",#18

 "WCeZB8yUTdgjayQol2KS",#19

 "PRKuX3CklkoZWwfOHbpK",#20

 "cH3zySmRf29wCQpE7FSK",#21

 "Jbpfr31iCjbpThSfHk6i",#22

 "mwBDDBrer7qemsD7RDSf",#23

 "avHJJ56JeUvZ8fr7wkGB"#24

]

ticket = "11280ae602cd6588086549e07edb3849e4ac1b502945791f8d2b4e8ab69504e8"

name = "TheVamp"

url = "http://hackyeaster.hacking-

lab.com/hackyeaster/json?service=solution"

cookies = dict(JSESSIONID="6C1600800B538C57CBB2E4E2EA959550")

#time bomb

while 1:

 t = time.localtime(time.time())

 if t.tm_hour >= 13 and t.tm_min>=37 and t.tm_sec>=01:

 print "start" + str(t)

 break

59

print "letsgo"

i=24

while 1:

 if i >0:

 print "code "+str(i)+": "+ sEggs[i-1]

 postdata = {"code":sEggs[i-1],"name":name, "ticket":ticket }

 r = requests.post(url, data=postdata)

 print r.text

 i = i-1

 time.sleep(0.65)

 else:

 break

Happy Easter was a lot of fun. Thx for this journey  see you next year!

