Hackyeaster Write Up

AN
\-. =/
I\/vv\/ |

Made by TheVamp

Table of Contents

ChalleNgE 01 — EQSY ONE .eeeeeiiiiieeie ettt e e e e e e e e e e e e e e e e e e e s e s s es s s ssnssabseseteaannrneeaeeaaaaaeaeens 4
TASK ettt b e bt bt e bt e b et e bt e e b et e bt e e ehe e e ahe e e bt e e ente e eateennbeenareesares 4
Y] 11T o TP SRR 4

Challenge 02 — JUSE CrUISIN .ueeiieiiiciiieeee e ecciitee et e e ettt e e e e e ettt e e e e e e s bt ee e e e e s sabteeeeeeesnnseaeaeeessnsseaeeas 5
L 11 PP TP PP PP PPPOPIR 5
SOIULION ettt ettt b e e b e ettt e bt e e bt e e bt e e be e e bt e e abe e e abeeeabeeesbeeebeeeebeeenneeenns 5

Challenge 03 — Bird’ s NEST....uiiiiiiciiiiiee ettt e e e e ettt e e e e e e ettt e e e e e s eabtaeeeeeeennntaaeeeeesnnnseneeas 6
Ak ettt e e et e et e e e st et e e s hte e e e be e e e e bae e e s bbe e e e bbeeeabaeeeebbeeeenreeeabaeeenn 6
LI 1172 PP P PP P PPOPIR 6
SOIULION 2 1.ttt b et e bt e e bt e bt e e bt e e bt e s bt e e bt e ebeeebeeesbeeebeeeabeeenneeanns 6
SOIULION ettt et e b et e bt e b et e bt e ettt e bt e e ebe e e abeeebeeebeeesbe e e beeeeneeenneeenns 7

Challenge 04 — SOUNT ChECK ...ccciieiiieeee ettt e e e e e e et e e e e e s b bre e e e e e eabtaeeeeeesnnteaeeas 8
LI 1T T P O PP P PP UPPP T OPPPOPIR 8
Y01 V] 1o} o PSP PR PPPPRPRUPOt 8

Challenge 05 — Play it @gain, PAUlccoiiiiiiiiie ettt ettt e e e e e e ebte e e e e e e e abrae e e e e e ennrees 10
TASK ettt b bttt e bt e bt e e h et e e he e e eh et e e h bt e ehe e e be e e enr e e sheeeanbe e eareesneeenee 10
Y] 1154 o TP PPRPR 10

Challenge 06 — GOING UP .uuviiiiiiiiiiiiiee e eeiteee e ettt e e e e sttt e e e e e s st e e e e e e s bbeeeeeessaabaeeeeeeessnsseaaaesssnnsseees 11
B 11 PSPPSRSO PRRP 11
SOIULION ettt et sh e s bt e e st e e s at e e s bt e e s ab e e sabeesmbeesabeesateesateesabeesarees 11

Challenge 07 — Wise Rabbit ONCE MOFEciiiiiiiciiiieie ettt e st e e e e e s sbree e e e e e s arrees 12
B - [O T O TP P PO T PP PP T PRUPTOPPPPTOTN 12
Y01 0] 4o} o PP PPPPOPPPOTRRT 12

ChalleNge 08 — JUST DIIVE....uueiiiiiecciiiiee ettt e et e e e e e cttr e e e e e e ettt e e e e e e e bbaeeeaeeeaabtaeaeeeeesassaneeaeeennsseens 13
TASK ettt e h e b et et e h et e h et e a e e sh et e Rt e ne e e s he e e nn e nar e e nneeenee 13
SOIULION ettt et et e ettt e s s bt e e s abe e e e sabbeesabbeeseabaeeesabbeeeeabbeeeaabaeeesabbeeesnreeas 13

Challenge 09 — Brain GAME ...ciiiiieciiiiie e ettt e e eerte e e e s e ettt e e e e s et e e e e s e s bbeeeeeessaabaeeaeeeessasreaaeeessnnsseees 17
B 11 P TP T PRSPPSO 17
SOIULION ettt ettt e s ht e e s bt e s bt e s at e e s bt e e s ab e e sabeesabeesabeesateesateesabeesareas 17

Challenge 10 — BIUEBPIINT ..uviiiieiiiiciiiiee ettt e e e e e e et e e e e e e sbbe e e e e e essabreeeeeeessasreaeeaeesnassenes 19
B - [T P PO T PO P O PP PRUTTOPPPPRTO 19
Y01 V] 4o} o PP P TP PPPPOPPPOTRRT 20

Challenge 11 — TWISTEA DISC .eeriiiiiciiiiiee e ettt e et e e e e ettt e e e e e e e rtr e e e e e e e tbae e e e e e ssasteeeeaeeenasraneeaeeennssenes 21
L £ P T TP P PSPPSR 21
SOIULION ettt ettt e et e e sttt e s sabe e e e sabbee s abbeeeaabbeeesabbeeeeabbeeeaabaeeesabbeeesnreeas 22

- 1] O TP P PP PP PRSP PPPPRTON 24
Yo] [V 1o o H T TP PP PPPRTI 24
Challenge 13 — Fractal FUMDBIINGooiiiiiieiee ettt e e e e sbar e e e e e e e e e e e e e e e anraes 26
L £ T T TP P S PRP PSPPI 26
SOIULION ettt ettt ettt e ettt e e bt e e s sabee e e eabt e e s abbeeseabbeeesabbeeseabbeeeaabbeeesabbeeesnreeas 27
Challenge 14 — PLA.L.M. . ittt et e e s e e bttt e e e e s et e e e e e e sttt e e e e e esanbaaeaeeeesansreaeaeeesnnsseees 29
- 11 P TP PRRP 29
Yo [V} 4o H T TSP PP PPR PSPPI 29
Challenge 15 — Big Bad WOl ... ettt e e e e st e e e e e e e eaaraa e e e e e e anreees 32
- 11 TP PSP PRUROPPPP 32
Yo] [V 1o o H TP PP PPPRTI 32
Challenge 16 — EZE COlONNG ..eeiiiiiieiee ettt e e et e e e e e ettt e e e e e e e e bta e e e e e e enanraneeaeeenaneens 34
L £ TSRO P S PRP PSP 34
SOIULION Lttt ettt e sttt e e et b e e s bt e e s s abe e e e sabb e e s abbee e aabeeeesabbeessabbeeeaabbeeesabbeeesnreens 34
(0o =Y L1t =i A A S 10T oY Y o o N 36
B 11 PSPPSRSO PRRP 36
Yo [V 4T H T T TPV PO P PPTRPR PP 36
Challenge 18 — BUG HUNTEI ...eiiiiiiiiiiee ettt e e et e e e e e st e e e e e e s ebaae e e e e e enanbaeaeaeesnnseees 38
B - [T P TP P T PPUTOPPPPT 38
Yo] [V 1o 1o H RO PP RO PPPRTI 38
Challenge 19 — ASSEMDBIE THiS ...t e e e e et e e e e e e sbar e e e e e e e sanraeee e e e e nnrees 41
TASK ettt ettt e b et e bt e e hr e e s bt e e bt e e h bt e sh et e be e e enb e e nheeennbeeenreenneeenne 41
SOTULION Lttt ettt st e e et e e e s bt e e e sabeeeesabb e e s abbee e aabbeeesabbeeesabbeeeaabaeeesabbeeesanreeas 41
Challenge 20 — HUMPL'S DUMIP ..coeiiiiiie ittt ettt e ettt e e s e st e e e e e s sabee e e e e e ssasbeeaeeeesansbeaaaeeesnnssenes 44
L 5] P T TP TP T ST PPPTO PRSP 44
Yo [V 4T H TP TPV P PP PSPPI 44
Challenge 21 — Crypto COUNCIl.....c.uuiiiiee i e e et e e e e e s ebe e e e e e e e sabbaeee e e e e assees 46
B - 1] T P P TP P PPV PSR PPPPTON 46
o] [T 1o] E S TR UP P OPPPTTI 47
Challenge 22 — DUMPSTEI DIVINGuviiieiiiiiiieiee ettt e e e e e e e e et e e e e e e e eabte e e e e e e e sasraaeeaeeenanseees 48
L £ TSP T S PRPOPPRPR 48
SOTULION Lttt e et e e ettt e e e bt e e s ab e e e e sabe e e s abb e e e sabbeeesabbeesaabbeeeaabaeeesabbeeesnreens 49
Challenge 23 - HEIZONACK .eevieieieieeeee e e e e e e e e e e e e e e e e e e s e e e e s e s e e e sarsraeeaeeeeeeeeees 50
B 1] ST PR PRU PR 50
SOIULION et b et sh et e s bt e s bt e sht e e s bt e e s ab e e sabeesa bt e sabeesateenateesabeesarees 50

Challenge 01 — Easy One

Task
As always, the first challenge is very easy. Even babies can solve this one!

Find the code and enter it in the Egg-O-Matic™ below! One word, all lowercase.

xt hex yhi dde nyy str
in gyy isy ymo 1ly cod

dl exy SOX xsi mpl ey S

Solution
This is an easy one. Remove all yy, xy and then all x. The text is then “the hidden string is mollycoddle
so simple”. So “mollycoddle” is the answer.

Challenge 02 — Just Cruisin’

Task
Need a holiday? Book a cruise on our new flag ship!

Seek out the promotion code below (lowercase only, no spaces) and get a free welcome package!

B =N
7 m K @ s
X3 JLIE BL
4 @¢riX
EEMC_ N

After a lot of google searching, | found the following site: http://www.usps.org/f stuff/sigflgs.html

The Flags are international Signal Flags, so let’s translate the flags:

EN?JO
Y?AFR
?ESHS
EABRM
EEZ1E

Some flags are not documented on the site, so | filled the gap with a question mark. If you only take
the letters you get “ENJOYAFRESHSEABRMEEZ1E”. It is not the solution, but sounds like “enjoy a
fresh sea breeze”! The solution is “enjoyafreshseabreeze”. Maybe the flag signal guy drunk to much
rum :D

http://www.usps.org/f_stuff/sigflgs.html

Challenge 03 — Bird’s Nest
Task
This is a mobile challenge. Check it out in the Hacky Easter app!

Wait, what? No way! | need a smartphone? | have no money for that ®

Task 2
Reverse the APK and get the Task description!

Solution 2
OK, first of all, we need the APK file. We have the link to the google store:
http://play.google.com/store/apps/details?id=ps.hacking.hackyeaster.android

Now we only need an online apk-downloader. | found the following on the internet:

e https://apps.evozi.com/apk-downloader/
e http://apkleecher.com/

In my case, | used apkleecher, because evozi was not available.

If you know a little bit about APK reverse engineering, you know that APK files are normal ZIP files.
You can unpack it out of the box. Within the assets folder | found a web-root, which contains all
Challenge files. For challenge 3 the following website is displayed:

= Hacky Easter 2016

Challenge 03

Bird's Nest

The little bird has hidden an egg in its nest. Can you find it?

http://play.google.com/store/apps/details?id=ps.hacking.hackyeaster.android
https://apps.evozi.com/apk-downloader/
http://apkleecher.com/

Solution
The little bird looks a little bit like the twitter bird. And the hashtags! A search on twitter after the
hashtags #nest #egg03 showed up the following tweet:

Blue Little Birdie X 2 Folgen

% SlueL1ttleB1rd

Hello! #egg03 is in my #nest at bit.ly/1Jjibld

& Ubersetzung anzeigen

And if we follow the link, we get the egg #03

Challenge 04 — Sound Check

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03
write up.

1N

Challenge 04
Sound Check

The new sound system needs a check. Sharpen your ears and listen carefully!

Start sound check
Solution

If you have the app, you should hear a sound, if you press on “Start sound check”. The easiest way, to
find the frequency is another app, which analyses the frequency for you. | used in this case the app...
... ¥let’s look up in the app store*

OK, you don’t need such an app. You only need reversing for this task. In Challenge 03 | explained
how you get the APK. For analyzing the sources of the apk file you need the awesome Bytecode
Viewer an open source APK and Java Decompiling Tool!!!

But let us dive into the source code analysis. You find the code for the challenge in some
SoundActivity.class:

-=/ SpundActivity$15151.dass
- =/ SpundActivity$151.dass
-=) SpundActivity$1.dass

-~ | SoundActivity$251.dass
-~ | SoundActivity$2.dass

-~ | SoundActivity. dass

After a little bit of analyzing | found out, that the goal is in SoundActivityS2.class:

http://bytecodeviewer.com/
http://bytecodeviewer.com/

this.wvalsprogressBar.post (new SoundRcotiwvity.2.l1(this));
if (ScundRectiwity.acces35300(this.this$0) < 5) |

break lakel206;
}
this.valsbuttonSound.setVisibility (8} ;
this.wal$buctonCheck.setWVisikilicy (8] ;
this.valfspinner.setVisibility(8);
thiz.valéprogressBar.3etVisibilicyi(2);
this.wvaléimage.setVisibilicy (0) ;
array0fByte = Ez=edd.decode(this.valfactivity.getString (2131034134}, 0} ;
=] for (int i = 0; i < arrayOfByte.length; i++) |

array0fByte[i] = ((byte) (i ~ arrayOfByte[i])):

}

SoundBctivity.access$302 (this.this$0, 0);
}
Bitmap localBitmap = BitmapFactory.decodeBytelrray(array0fByte, 0, array0fByte.length);
this.valfimage.setImageBitmap (localBitmap) ;
return;
label206:
this.valfbuttonSound.setEnakled (true);
this.valsbuttonCheck.setEnabled (false);

0

[T T SR e T T w'F]

oh A

=1

LT T T . L I T L T R O R LR T I)

e I R)
=1 g A W= L R O WD

o
=TT
—

4]

—

The important things happened from line 37 to 40. Load the base64 string from the resources.arsc,
and do some XOR magic. Let’s open the resources.arsc:

(53]

SoundictivityBEMI4i4iVFMRAKPHROICQOC
¥aZ¥L0cr9b3iBxewMELAVIeHeSed3xzvXSH ir
ohLajplEZ2aWg54KTkevitupiTT1INCEDvANK
YWVobHEFmeWdhA=zein8BBOBYIERInY00obi87

This is our base64 String. But you need to know, that after 1414 the base64 string starts ;) Now |
wrote a little python script, which will produce the egg for challenge 04

import baset4
base64data = '''[base6d datal '’

nearimage = baseb64.b64decode (basebddata)
imgfile = ""

for i,c in enumerate(nearimage) :
imgfile = imgfile + chr((i * ord(c))%256)

print imgfile

Now | start the python script with “python SoundActivity.py > egg04.png”. And that was it ©

Challenge 05 — Play it again, Paul

Task
Do you know Paul? If not, it's about time to get to know him! Check out his video below!
Cu vi scias Patlilo? Se ne, §i estas pri tempo ekkoni lin! Kontroli lian video sube!

[Here is an embedded video, you can watch the original here:
https://www.youtube.com/watch?v=Qgwr407AChs]

Solution
OK, avideo? Let’s look at the source code:

<wideo id="video" eclass="videco-js vjs-default-skin"
controls prelcad="metadata" width="480" height="400"
poster="paul/poster.png"”
data-setop="">
<source src="http://media.hacking-lab.com/hackyeaster/he2016/video/video.np4" type="video/mp4">
<source src="http://mediz.hacking-lab.com/hackyeaster/he20lé6/video/video.webmn" type="video,/webm">
<source src="http://media.hacking-lab.com/hackyeaster/he20l6/video/video.ogv" type="video/ogg">
<track label="English" kind="captions" srclang="en" sro="paul/video-en.vct" default>
<track label="Deutsch" kind="captions" srclang="de" sro="paul/video-de.wvct">
<track label="Francais" kind="capticons" srclang="fr" src="paul/video-fr.wvtt">
<track label="Esperanto” kind="captions" srclang="=o" sro="paul/videoc-so.vct">
<fvideo>

The second sentence in the task is Esperanto. A look in that translation-file reveals maybe something:

1
00:00:56.600 —->» 00:00:58.700
Filmo de Viviane Michel

1

00:01:00.000 —->» 00:01:03.000
passphrase is "youtubelotitis"

Cool, there is the code.

10

https://www.youtube.com/watch?v=Qgwr407AChs

Challenge 06 — Going Up
Task

Time for an elevator ride. Guess the right floor, and find the hidden easter egg!

OOO
OO
OO

[This are the elevator button. And behind every number is a link to the floor]

Solution
If you read the source code, you notice that the link from the thirteenth floor is a little bit odd:

="width: 25%; padding-bottom: 10px;">

<div class="round-button-circle"><a href="?svbbe=punatrzr" cla
<div class="round-button-circle"><a href="?floocr=fourteen”" cla
<div class="round-button-circle"><a href="?floor=fifteen™ clas

“sybbe=punatrzr” is in ROT13 “floor=changeme”. So | submitted the ROT13 of “floor=thirteen”
(“sybbe=guvegrra”):

Going Up

Congrats!

11

Challenge 07 — Wise Rabbit Once More

Task
Wise Rabbit says:

The solution is in the solutions!
Go back and scroll to 123!

Solution

If you know wise rabbit from last year, he likes to play hide and seek. On the home page of
Hackyeaster (HE), you find the links to the solutions of the last years. The solution from 2015 is
exactly 123 pages big. A look on the last page reveals:

password: goldfish

Damn you wise rabbit. This was hard to find! :D
But now | have the next egg:

12

Challenge 08 — Just Drive

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03
write up.

= Hacky Easter 2016

Challenge 08

' Just Drive

Solution
Hmm... Just Drive? OK, start the decompiler!

First | recommend to read Challenge 03 and Challenge 04. There is described how | get the APK and
which tool | use for the reverse-engineering process.

Before | begin to explain the reversing process, | must mention that the website, where | take the
screenshot for the task, automatically redirected to ps: //rot?h= ! So | search for this link in the
source code. After a small look up | found the URL in the Activity.class:
BL LN B Lanie B MAL D LhLiiy L eeban — poag g emins
private static final String URL _MYSTATUS = “pa://mystatus:";
private static final String URL_ROT = “ps://rotz"™;
private static final String URL_SCANNER = “pa://scan”;
So our task is internally called ROT. Let’s look up, if we found similar functions with the name ROT in
it.
private String handleRot (String paramsr.ringﬁ]
{

char c;

int i;

Jkject localObject;

switch ({(WindowManager)getSystemService ("window")) .getDefaultDisplay().getRotation())
{

case 2:

“handleRot” seems to be our function. From line 86 to 157. But you see already, that you should
rotate your smartphone like a staring wheel. But | don’t have a smartphone, so no fun for me!

From line 119 to line 149 we have a big block which do the rotating checks:

13

119 if ((paramString.length()} >= 7) =&z ("1lab%a970684£747c25d9c8adb0fdat47fae98ck98" .equals (shal (paramString.substring(0, 7))}

else if ((paramString.length() »>= &) sz

"5E192£7d1263bd420efbTE8ccEE4a84E8T71239cE " .equals (shal (paramString.substring (0, &)}}))

else if ((paramString.length(} »>= 5) =& ("eBf£235e79hedfEb13598b285a6fdaf2acT0a66ca”. .equals (shal (paramString. substring({d, 5)))))

else if ((paramString.length() >= 4} szs

"3daeelclbadad9f5bi0E66726EdTE29%acaafals" .equals (shal (paramString. substring(d, 4)))))

else if ((paramString.length{) »>= 3} =&

"£11£a81c0bT72716bba0536dd34bib098Taf69003" .equals (shal (paramString. substring(d, 3)))))

139 else if ((paramString.length() >= 2} s& ("af6d43eleZodseadszeTiazed4966ca1445152d8a" .equals (shal (paramString. substring(0, 2)))))

1408 {

141 i=2

142 1

143 else

144H {

145 int j = paramString.length(};
146 i=0;

147 if (3 >=1)

148H {

19 boolean bool = "4dcTcocOecd34ed06502767136729763eclld2c4b7" . equals (shal (paramString.substring (0, 1))):

You see some SHA1 values. Which represents the string of the rotation. The last SHA1 have only one
character, because of the substring-function. So you can do it by hand, bruteforce it or just google it:

4dc7c9ecd434ed06502767136789763eclld2cd4b7 = “r”

The second hash have only 2 characters. substring (0, 2) soitshould be also easy to get this
one:

a8643e0e206d5eadB82e73aae64966calddfl152d8a = “nr”

Ok, the rotation goes further on. | analyzed the script a little bit more and found out, that the SHA1
values are have only the characters “r”, “n” and “x” (see line 113 to 117). So you only have 3
rotations. With this knowledge | should be able to write a fast bruteforce script in python:

import hashlib

shalvalues = ['4dc7c9ec434ed06502767136789763eclld2cdb7",
'a8643e0e26dbead82e73aae6d4966calddfls52d8a’,
'f11fa81c0b72716bba0536dd34b900987af69p003",
'3daeelc0bada%99f5bf0866728fd7829%acaafalb’,
'e8f235e79%0e9f8b13598b285a6fdaf2ac70a6b6ca’,
'58192£7d1263bd420efb788cc884a84£871239¢ct",
'1ab%9a97066f747c25d9cbabb0fdacd7fae98cb98",
'4692bd56dd3070f74b7e"
1

bs = "rnx

ps = ""

for i in xrange(0,len(shalvalues)):
for ¢ in bs:
if hashlib.shal (c+ps) .hexdigest () [0:18] == shalvalues[i1][0:18]:
ps = ¢ + ps
print ps + ":" + hashlib.shal (ps) .hexdigest ()
break;

And the results are the following:

14

So the solution is rnrxrxrn. But why | have a small part of a SHA1 hash in my source code? Because it
is in the reversed code as well:

103 localCbiject = ™"
104 String str = shal (param3tring);

105E if (str.startsWith("4692bd56d4d3070£74k7e™)) |
& localObject = 3tr;

10 }

OK but where is our egg? Maybe in the html-file, where the challenge is displayed. Yes, in the assets
folder within the web root you found challenge08.html. There is a scrambled egg. | figured already in
Challenge 11 out, how | can unscramble the scrambled eggs®©. Within the web-source-code is
another important fact:

+ CryptodS.enc.Latinl.stringify (Cryvptod5.AES.decrypt (scranbledEggCipher, j=son.k))) ;s

It sends k as key, to unscramble the key. But what is k? A look back in the decompiled code said:

locallbject = "";
String str = shal (paramString);
if (str.startsWith("4692bd56dd3070£74kTe™)) {
localCbject = ster
}
break;
}
for (;;)
{
return "{ “"s\": " + 1 + ", W"h\":\"" + paramString + "\", \"EA":\"" + (3tring) localObject + "\" }";

So you see, that k is the localObject, which is the SHA1 of our solution. So our key is
“4692bd56dd3070f74b7e81c6b2f69339b0fd6062”.

15

Here is the python code, to unscramble the egg:

from Crypto.Cipher import AES
from Crypto.Hash import MD5
import base6t4

sEgg''' [baseb6d-code of scrambled Egg]'''
goal = "'"'"iVBORwWOKGgOAAAANS''''#PNG-Header
secret = "4692bd56dd3070£74b7e81c6b2£6933900£fd6062"

encoded = sEgg

encrypted = baseb64.b64decode (encoded)
salt = encrypted[8:16]

data = encrypted[16:]

try:
def openssl kdf(req):
prev = "'
while reg>0:
prev = MD5.new(prev+secret+salt) .digest ()
req -= 16
yield prev
mat = "'.join([x for x in openssl kdf(32+16) 1)
key = mat[0:32]
iv = mat[32:48]
dec = AES.new(key, AES.MODE CBC, iv)

clear = dec.decrypt(data)
if clear[:5] == goall:5]:
print base64.b64decode (clear)
except:
nothing = ""

First put the base64 code into the script and the run “justdrive.py > justdrive.png”:

16

Challenge 09 — Brain Game

Task
What about a little brain game?

255-255-0-0-0-0-255-255

1. e4 e5 2. Nf3 Nc6 3. Bb5 Nf6 4. d3 Bc5 5. O-O d6 6. Nbd2 O-O 7. Bxc6 bxc6 8. h3 h6 9. Rel Re8 10.
Nfl a5 11. Ng3 Rb8 12. b3 Bb4 13. Bd2 Ra8 14. c3 Bc5 15. d4 Bb6 16. dxe5 dxe5 17. c4 Nh7 18. Qe2
Nf8 19. Be3 c5 20. Rad1 Qf6 21. Nh5 Qe7 22. Nh2 Kh7 23. Qf3 6 24. Ng4 Bxg4 25. Qxg4 Red8 26.
Qf5+ Kh8 27. f4 Rxd1 28. Rxd1 exf4 29. Bxf4 Qe6 30. Rd3 Re8 31. Nxg7 Kxg7 32. Qh5 Nh7 33. Bxh6+
Kh8 34. Qg6 Qg8 35. Bg7+ Qxg7 36. Qxe8+ Qf8 37. Qe6 Qh6 38. e5 Qcl+ 39. Kh2 Qf4+ 40. Rg3 1-0

Solution

Hmm... the image looks like a chess game. If you google the hint at the bottom, you get to
http://www.365chess.com/news where many games are documented. A further google research
reveals it was a game at the “77th Tata Steel 2015 Round 9” between Carlsen,M and Radjabov, T.

(i) | www.365chess.com/view_game_news.php?gid=1693

17

http://www.365chess.com/news

So our binary code should look like this:

00000001
00100001
01001100
10101000
00100100
01000011
10000011
00000000

Now we must translate every row from top to bottom and from binary to int:
1-33-76-168-36-67-131-0

And this is our final solution :)
Egg-O-Matic ™

Enter password and press enter.

1-33-76-168-36-67-131-0

18

Challenge 10 — Blueprint

Task
Time for some math! Find the number which produces the plot on the bottom!

Try these two samples: sample 1, sample 2.

6070167365375209955948155059411510252660855723716655282000387319314 78673846

T27315684910259261305535019800769557502357955237333126657517770915783070679

[=2
P
o
[~
L
3]
=
[€n]
Ln
|
[=
]
=l
(]
(53]
o
=
]
=
o
[
]
]
[
[
Xl
=
]
e
]
3]
1
(¥
n
o
1]
n
.y
—
3]
3]
[¥A]
3]
[~
—
[¥A]
=
e
fd
[o)
0
[¥A]
on
N
L
n
e
[
=
FiN
[¥A]
-]
=
5
[
[n]
[
4]
I
1
(]
I
[83]

L]
]
=
[iw]
=
-
-
[83]
Lad
(5]
J
(W8]
N
=
I
—
=
==l
(.
L]
L]
=]
L
i
]
-2
e
=
on
[~2
LN
[T
[4]
]
[¥5]
g
(s
(.
n
n
(%]
[e5]
[
]
(]
[s)]
(]
Lad
L]
=
[83]
N
[~
(L]
[#5]
=]
—
[
i
(&3]
[83]
i
i
]
[¥5]
]
(L]
—
L]
Ll
=
[w]
=)
Lad

521858141803706752591127585236027411683206358835556869641180286211179357 745
0

72326208778420088

Your plot:
Target plot:

Image from the Challenge with sample 2

19

m

Solution

First of all, this was my last challenge | solved. | found it really hard, if you don’t know what this is.
My first attempts was some terrible Math and some bruteforce things. So totally stupid stuff. After a
while | looked up the equation from the JavaScript in the source code in google. The formula looked
like this:

((y/17) / pow(2, (L7*x)+(y%17)))% 2 > 0.5

Google said it is the Tupper’s self-referential formula! | must only find a website, where | can paint
the target plot. And indeed, there was this website: http://tuppers-formula.tk/

So | began to paint, and almost finished the word “Hacky”. For some reason, | wanted to see if it
worked on the HE-Site:

J]]11111117
I

y
7

Your plot:

. =
[T TT1rr
VA

Damn youl! So | painted It again, and this time right. The plot number is now:

176579492015814901528872625529774615508215478614638628392406643239116428074897541
681641793325671248874580950499668382723958388333354648532262931698930639856835422
348683939828636055448533804591049653503261373974416464862181695983478562079067833
614229059113869197437699759742373674003028861535476027091552243616865735457697656
105444429506238584383051262100293283222118456901855469818763894181110080508013645
884497726056403410392923221554648832542085467262023169013883606836051142881849628
64450110296056848249404578342545423849729556480

14LEB L4 L 1Y3320b 1 12488 [458U95U4Y90bE!

Match!

20

https://en.wikipedia.org/wiki/Tupper's_self-referential_formula
http://tuppers-formula.tk/

Challenge 11 — Twisted Disc

Task
You found a secret disc which conceals a secret password. Can you crack it?

Hint: Each ring of the disc holds one letter. The first letter sits on the outermost ring.

21

Solution
The first relevant point on this challenge is, to understand how the Egg-O-Matic works. Why? If we
understand how it worked, we can bruteforce everything offline.

<script type="text/javascript" src="j=/crypto-js/aes.js"»></script>
<gcript type="text/javascript" src="js/crypto-js/core-min.js"></=cript>
<script type="text/javascript" src="js/crypto-js/enc-basefd-min.js"></script>
<script>setChallld(ll) ;</=script>
<script>

scrambledEggCipher = '"UZFsdGVEX1981214uS9M/ suVrFl1EwaspK+aT,/BT31FkPgelMteC
</script>

If you analyze the source code, you see that the scrambledEgg (see Image above) is encrypted with
AES from crypto-js. After hours of research | found the equivalent decryption in python on
stackoverflow. So now can the challenge begin!

First of all, | wrote down all rings:

Ring0: "uueiyzybmvxgpjlcxnjgwoowgfdhilfrmgpsrtvkbeanstzkcda"
Ringl: "dfbkcooltgwreezymklcfdtvghvsmrzxubuwxhappys"

Ring2: "lonkamuffyiolyumsschajdettcpidephjk"

Ring3: "chefpdopoefussycrlhuvidlyrv"

Ring4: "simpeljgninxmpelxjqg"

Ring5: "kosfflaohlska"

Ring6: "eopllep"

Because we try to bruteforce the 7 character long password, we should first remove all double
characters, to improve the bruteforce speed. So here is the optimized python script:

import base64
from Crypto.Cipher import AES
from Crypto.Hash import MD5

sEgg=

goal = #PNG Header Base64
ba = "abcdefghijklmnopgrstuvwxyz"

bb = "abcdefhklmopgrstuvwxyz"

bc = "acdefhijklmnopstuy"

bd = "cdefhiloprsuvy"

be = "eijlmnpgsx"

bf = "afhklos"

bg = "elop"

for a in ba:
for b in Dbb:
for c in Dbc:
for d in bd:
for e in be:
for f in bf:
for g in Dbg:

secret = at+b+c+d+e+f+g

encoded = sEgg

encrypted = base64.b64decode (encoded)

salt = encrypted[8:16]

data = encrypted[16:]

try:

def openssl kdf (req):

prev = "'
while reg>0:

22

http://stackoverflow.com/questions/8806481/how-can-i-decrypt-something-with-pycrypto-that-was-encrypted-using-openssl

prev =
MD5 .new (prev+secret+salt) .digest ()

req -= 16

yield prev

mat = "'.join([x for x in

openssl kdf (32+16) 1)
mat[0:32]
mat[32:48]

key
iv

dec = AES.new(key, AES.MODE CBC, iv)
clear = dec.decrypt(data)
if clear[:5] == goal[:5]:
print secret
except:
nothing = ""

The final answer is “hanisho” and here is the egg:

23

Challenge 12 — Version Out Of Control
Task
Version control is a powerful tool. Thinking she was oh so smart, Fluffy used it to hide an easter egg. Can

you pull out the egg from her file?

Hint: If you get stuck, go one step back

Download her file

Solution
Yeah, it is a little git chall. First you must unzip the folder, change into the directory, and do a git
stash. This should be done like a thousand times, so | wrote a little bash script for that:

#!/bin/bash

for i in {1..999}

do
unzip ./*.zip
cd *
git stash
done

OK, the script stopped at 722, because instead of a Zip file was an image in the Zip file!

What you gon' do with all that junk?
All that junk inside your trunk?

A further investigation revealed, in zip 723 was the last valid unpacking, before the image within the
zip file appears. "Git whatschanged" shows that there are three commits. So let’s test the first
commit"git checkout 93d630215b9c5¢c49f2c7f3c6b9felb55efd93cdl”. After
unpacking the zip, we got the same zips as before. So let’s try it from here again.

24

DIYLOL.COM

Another stop, damn. This time at the directory 0397! Within the folder was only this image (see
above). Checking out the branch in git: "git show-branch" ..., ok wrong branch: "git checkout blaster".
And unpacking again

in WIP on master: ommit committed.

committed. P 5 fluff

Now my script stopped and ask for a password. Thx god it stand a few lines above. After this nothing
happened. Still unpacking without errors. On directory 0001 we got the egg :)

25

Challenge 13 — Fractal Fumbling
Task

Do vou need a new wallpaper? What about a fancy fractal?

Find the password hidden in the wallpaperimage, and enter it in the Egg-O-Matic below.

Download wallpaper

The image is 9261 x 9261 pixel big! If you zoom in it looks like this:

Solution
OK for this QR-Fractal we need the following steps:

1. Getrid of that bunny, because it causes background noise and maybe the QR-reader can’t
read some of the QR-Codes
2. Read every QR-Code and save them in a list
3. Try every result from the generated list as password to unscramble the egg
e You know the unscrambled egg has a PNG header ;)
e Unscrambling eggs started at Challenge 11

Sounds easy, so here is my python source code:

from PIL import Image

from grtools import QR
import PIL

import baset4

from Crypto.Cipher import AES
from Crypto.Hash import MD5

img = Image.open("./wallpaper.jpg")
width, height = img.size
print "get rid of the bunny"
im = img.load()
for x in xrange(0,width):
for y in xrange(0,height):
if im[x,y][0] > 25 and im[x,y][1] > 25 and im[x,y][2] > 25:
im[x,y] = (255,255,255)
print "create dictionary"
content = []
for x in xrange(0,width,21):
for y in xrange(0,height,21):
box = (x,y,x+21,y+21)#get 1 QR-Code
omg img.crop (box) #cut QR-Code out
omg = omg.resize((84,84), PIL.Image.ANTIALIAS)#resize image
omg.save ("temp. jpg") fsave it temporaly
qr = QR(filename="temp. jpg") #read QR-Code
if gr.decode():
content.append(str(gr.data)) #decoded QR-Code into dict

print "dict-attack”

goal = #PNG-Header
skEgg =
for key in content:

secret = key

encoded = sEgg

encrypted = baseb64.b64decode (encoded)
salt = encrypted[8:16]

data = encrypted[16:]

try:
def openssl kdf (req):
prev = "'
while reg>0:
prev = MD5.new(prev+secret+salt) .digest()
req -= 16
yield prev
mat = "'.join([x for x in openssl kdf (32+16) 1)
key = mat[0:32]
iv = mat[32:48]
dec = AES.new(key, AES.MODE CBC, iv)

27

clear = dec.decrypt(data)
if clear[:5] == goal[:5]:
print secret
except:
nothing = ""

And the solution is “fractalsaresokew!”:

28

Challenge 14 — P.A.L.M.
Task

Folks at HOBO Authentication Systems implemented a new authentication system named PALM. ™

Prove that you can break it and find a pair of username and passcode to log on.

P.A.L.M. Authentication ™

Solution
The first step is a little source code review:

funetion checkEntries() {
var u = document.getElementById('puser').value;
var p = document.getElementById('ppass').value;

if (u 'yolo' E& b "133T7Y) A
document.location.href = 'challengel4 ' + u + ' " + p +
} else {

alertc ('nope'):
}
}

var _0x549b=["value"”,"puser”, "getElementById", "ppass", "rolo", "1

So the function said User is “yolo” and password is “1337”, but below that is var _0x549b which is a
large line with the same checkEntries function. So it’s overwrite the first one. Let’s set some
breakpoints in Firebug:

18 function checkEntries() {
13 var u = document.getElementById({'puser') _value;
20 var p = document._getElementById({'ppass') _value;
21 if (u == 'yolo' && p === "1337") {
. 22 document .location_href = 'challengeld ' +u + "' + p + " html';
23 } else {
zZ4 alert('nope');
25 1
®:: }
27
. 28 var _0xS549b=["value",K "puser",K "getElementById", "ppass™,"rola™, "length™, "cl
Z5

After | pressed the Login-Button the script doesn’t stopped as it should, maybe there is another point
where the script is executed:

29

O € > Y= Komsole HIML (SS Skript~ | DOM

» | alle = | challengel4.htmi@serverl.connd.sou.. = | {}

1 F ti : S .
UREELY | Etwas eingeben, um die Liste zu filtern

hackyeaster.hacking-lab.com/hackyeaster/
challengel4.html

¥ | challengeld.html@serverl.connl.source6858
challengeld.html@serverl.connl.source6861

hackyeaster.hacking-lab.com/hackyeaster/js/

There are 2 hidden scripts. After setting some breakpoints and tried to login, the script breaked at
the breakpoint from challengel4.html@serverl.conn0.source6858, but not at the second one. So
only the first script should be the right one. | extracted the script and beautified it with the
ScriptDeobfuscator from KahuSecurity. Here is the “beautiful” script:

function checkEntries () {
var u=document.getElementById('puser') .value;
var p=document.getElementById('ppass').value;
var used=[0,0,0,0,0,0,0,0,0,01];
var ok=false;

if(u==='elsa') {

if(p>0&&p.length==10) {
ok=true; for(i=1;i<=10;i++) {
var digit=p.charAt(i-1);
var part=p.substring(0,i);
if(used[digit]!'=0]| |part%i!=0) {
ok=false

}

if(used[digit]==0) {
used[digit]=1
}

}

if(ok) {
document.location.href="'challengel4 '4u+' '+p+'.html'
}

else {
alert ('nope')
}
}

So the username is “elsa”. Now we only must find the right number. The number has a length of 10
and every digit may only be used once. | wrote a little python script, which generates some possible
numbers:

for x in xrange(123456788,10000000000) :
clist = list((str(x).zfill(10)))
plist = set(clist)
if len(plist) > 9:
print ''.join(clist)

Executing “python palmgen.py > palm_codes.dic” and | get a little dictionary.
30

mailto:challenge14.html@server1.conn0.source6858

In the next phase, | re-implemented the Authentication Script from JavaScript to python and
bruteforced it with my dictionary:

print "loading all palmcodes..."
with open("./palm codes.dic ") as f:
content = f.read().splitlines()
print "try all palmcodes... valid palmcodes will be printed"
for 1 in content:
c = list (1)
part = '
cool 1
for i in xrange(1l,11):
part += str(c[i-1])
if int(part)%i '= 0:
cool = 0
break;
if cool ==
print ''.join(c)
After a while | got the first Code: 3816547290 and with that we have our next egg ©

31

Challenge 15 — Big Bad Wolf
Task

Three little pigs have hidden in their house. You're the big, bad wolf, and your stomach is growling. Huff
and puff and blow the pigs' house in! Get that juicy bacon!

Hints:

® the pigs have hidden in three different media types (image, sound, text)

® no password cracking is necessary

Download the pigs' file

Solution
| downloaded the pigs’ file, which is a “disk.img” file. | can extract the data easily with 7zip:

s

Mame Anderungsdatum Typ Grake
J lost+found 29.11.201507:51 Dateiordner

|| disk.img 21.03.2016 18:37 IMG-Datei 16.034 KB
=/ piglet.jpg 29.11.2015 07:51 JPEG-Bild 92 KB
|=| pigs.jpg 29.11.201507:51 JPEG-Bild 94 KB
E song.mp3 29.11.201507:51 MPEG layer 3 2.593 KB
=L story.pdf 29.11.201507:51 Adobe Acrobat D... 12 KB
| story.bet 29.11.2015 07:51 TXT-Datei 2KB
|i=| wolf,jpg 29.11.2015 07:51 JPEG-Bild 187 KB

We know, that the pigs are hidden within an image, a sound and a text. First the image, | looked a
little bit in the properties and found immediately the second pig:

Sicherheit | Details | Viorgangerversionen

Eigenschaft Wert it
Beschreibung

Titel

Thema

Bewertung

Markierungen

Kommentare pig Z: Cazsades

m

Ursprung
Autaren
Aufnahmedatum

Now we look up at the text files. | found something suspicious in the story.txt:

S, T BT U R =]

L]

THE THREE LITTLE PIGS ICE]LF]
ICEILE]
Once upon a time, there were three little pigs who went off to build their houses. N3
[CRILE]
The first little pig built his house of straw, which was not very strong. B3
[CEILF]
One day, the big bad wolf came and said, "Little pig, little pig, let me come in." @G
ICEILF]

. L. . - - . - . - .- - P - F - P]

What is all that noise with whitespaces and tab’s? | tried to decipher it manually, but it doesn’t
worked. After a little research on google, | came across this presentation. SNOW seems to be the
right candidate:

Now we need only the mp3 file. Listening and some basic analysis didn’t helped. Again after a little
google research on Stegano tools, | found a good list on Wikipedia. Maybe MP3Stego is the tool |
searched for. | found also a GUI for that tool ©:

MP3 Stenograph 1

> S
Decode TXT file frem an MP3 file. . ‘

Select MP3 file To decode : F

|song.mp3

@ DECODE FIRLE

@) Close

Copyright © 1338 N.V. Viking Soft Programmed by WiPeR ...

For the passphrase | used nothing. An empty password. The output was a text file with the content
“pig 3: Wynchell”. We found the three pigs and got the next egg on this journey \o/

33

http://de.slideshare.net/saugatapalit/steganography-28604752
https://en.wikipedia.org/wiki/Steganography_tools

Challenge 16 — Egg Coloring

Task
This task was directly extracted from the APK file. Look for more information on the Challenge 03
write up.

Challenge 16

Egg Coloring
Egg coloring is fun!

Can you get the yellow egg?

Start coloring

Solution
Hmm... How could | get it? Only with reverse engineering!!! :D

First | recommend to read Challenge 03 and Challenge 04. There is described how | get the APK and
which tool | use for the reverse-engineering process.

First we have this time two classes to analyze:

<= ColorActivity$1l.dass
-+~ | ColorActivity.dass

The ColorActivityS1.class is not interesting. The only thing what it does is, to pass the values from a
spinner to the main-class. The Main-Class is more interesting:

public class ColorActivity
extends Activity

24 private void colorize(int paramInt)
25 B |

26 String str = "http://hackyesaster.hacking-lab.com/ha

2 ImageView locallmageView = (ImageView)findViewById():
new Eggloader() .execute (new Object[] { str, locallmageView, this }):

Lo

"ekey=" + "eggsited” + "&hmac=" + hmacs[paramInt];

As you see, we have an EGG_URL, a key, some codes and some SHA1-HMAC's. The codes are the RGB

colors in hex. At the following site you can generate SHA1-HMAC's:
http://www.freeformatter.com/hmac-generator.html. Here is the result one for the red color:

34

http://www.freeformatter.com/hmac-generator.html

Copy-paste the message here

ff0000

Secret Key
eggsited

Select a message digest algorithm

SHA1 E|

COMPUTE HMAC

Computed HMAC (in Hex):
f4e075524bad470867e1891c1abd1fc21df1f56a

It is the same code like in the source code. We need only the yellow egg. So it should be ffff00 and
the SHA1-HMAC from this hex-color. At line 26 is the URL we should use, to get the egg. So here is
the final URL: http://hackyeaster.hacking-

lab.com/hackyeaster/egg?code=ffff00&key=eggsited& hmac=1da02c68080863fa302c20c3312371f4e
365a5f9

If we call the URL, we got the base64 encoded image. If you want to see the image, copy the whole
base64 string and type in your browser: “data:image/png;base64,[base64datal”. Replace
“[baseb4data]” with your copied base64 string. And done:

35

http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9
http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9
http://hackyeaster.hacking-lab.com/hackyeaster/egg?code=ffff00&key=eggsited&hmac=1da02c68080863fa302c20c3312371f4e365a5f9

Challenge 17 — Bunny Hop
Task

Wannabe programming guru Hazel B, Easterwood created a new programming language called "Bunny

Hop" You suspect Hazel to have cheated, because the language looks very familiar to you.

Download the following code and complete it! It will yield the QR code for egg 17.

Download the code

Solution
After staring some minutes on the code | came up with an idea:

First there is a function:

window

to lineofeggs :cnt
repeat cnt [egg hop 10]
backhop 10

end

First the code creates a window. Second there is a function called “lineofeggs”. What | think it does
is, to print cnt times 10 pixel. “egg hop 10” means write a black pixel and jump to the next position.
At the end of the function is a “backhop”, which means the position of the bunny (pointer) goes
back. Within the code are more commands. “egg” for writing a pixel. “left” and “right” have every
time multiple of 90, so | think it is the rotation of the bunny (pointer). If the bunny starts from the
upper left corner, looking to the right side and the command right 90 comes up, after this command
the bunny should look down. With this assumptions | wrote an Interpreter:

from PIL import Image
import PIL

print "load bunny data"
with open('eggl7.bunny') as f:
content = f.read().splitlines()

#lineofeggs repeat x times: write pixel (egg) + go+l in direction where you
look, after all go-1

#right rotate by x degrees to the right

#left rotate by x degrees to the left

#hop increase index by x in direction where you look

img Image.new ("RGB", (25,25), "white")#create image
pix = img.load()

#N,E,S,W = 0,1,2,3 (North, East, South, West)

look = 1 #first you looks east

x =0

y=0

36

#function for go in the right direction
def go(x,y):

if look ==
y =1
elif look == 1:
x += 1
elif look == 2:
y += 1
elif look == 3:
x == 1

return x,y
print "printing Image...
for cmd in content:

cmddata = cmd.split (" ")

if cmddata[0] == "lineofeggs":

for i in xrange(0,int(cmddata[l])):
pix[x,y] = (0,0,0)+#egg command
%X,y = go(x,y)ihop 10
look = (look + 2) % 4#look backwards
X,y = go(x,y)#jump Jump 1 (backjump)
look = (look + 2) % 4#and look forward again
elif cmddata[0] == "hop":
for i in xrange (0, (int (cmddata[1]1)/10)):
X,y = go(x,y)#jump x times
elif cmddata[0] == "right":
rotate = int(cmddata[l1])/90
look = (look + rotate) % 4#rotate right
elif cmddata[0] == "left":
rotate = int(cmddata[l1])/90
look = (look = rotate) % 4 #rotate left
elif cmddata[0] == "egg":
pix[x,y] = (0,0,0)#print black pixel
else:
print "unknown command: " 4+ cmd#in case of unknown cmd

img = img.resize((100,100)) #resize Image
img.save ("eggl7.png'") #save image

=]

And here are the result:

The next QR-Code, which is egg 17.

37

Challenge 18 — Bug Hunter
Task

Lacking of time, you were not able not complete your DeggCryptor program. In an act of desperation,

you instructed Sammy, the junior programmer, to implement the missing key generation function.

As always, Sammy miserably failed. Can you fix his code? It's the KeyGen class. Pay attention to the

comments!

Source Code

Solution
This time, we have a little C# project:

| DeggCryptor 12.05.2016 23:55 Dateiordner
DeggCryptor.sin 09.01.2016 15:41 SharpDevelop Proj... 1KB

Let’s fix the Source Code of the Keygen Class:

// Init the four seed walues. 1111 and multiples of it.

int hl = @x1111;
int h2 = ex2222;
int h3 = 8x3333;
int hd4 = 8wdd44;

Sammy! It said multiple of 1111!

// Init the four seed walues. 1111 and multiples of it.

int hl = 1111;
int h2 = 2222;
int h3 = 3333;
int hd4d = 4444,

f/ 1'eed iterations.
for (int 1 = 1; i < 1e88; i++)

1

Damn, Sammy 1000 iterations, not 999!

ff 1'e8d iterations.
for (int 1 = 1; i <= 1@88; i++)

1

// If ¢ is greater than d, double ¢ and d.
if (e » d)

c *= 2;

d *= 2;

Sammy, | think you missed something here!

38

£/ If ¢ is greater than d, double ¢ and d.

if (¢ » d)
{
c *= 2;
d *= 2;
¥

// Calculate new wvalues.
/f a: Take sum of a and b, and c and d. Then, multiply the two values.
a=a+h*c+d;

Sammy, | think you hate math, do you?
f/ Calculate new values.

// ar Take sum of a and b, and ¢ and d. Then, multiply the two values.
a=1(a+b)* ({c+d);

! h; multiply1with é: Using two additions instead of multiplying -»> performance boocoost!
b="b+ b;
b="b+b;

Yeah Sammy, boost to the hell of math.

I b multiply.with 3. Using two additions instead of multiplying -»> performance booooost!
b *= 3;

ff c, di Swap c and d
c =d;
d =c;

Sammy, you don’t have a clue from programming, do you?

ff o, d: Swap ¢ and d
int temp = c;

c =d;

d = temp;

/M Take last four digits (modulo 18'ee8),

a ¥= leeas;
b %= 1ee88;
c ¥= 1eeas;
d %= leeees;

Sammy, how much coffee did you had today?

// Take last four digits (modulo 18'eee),

a ¥= 106066 ;
b %= 1e8888;
c ¥= 106066 ;
d %= 10808;

That should be all mistakes. Sammy! F-grade!

39

40

Challenge 19 — Assemble This
Task

In this challenge you must crack a server-side program. Lucky for you, you got the assembly file of the

program. First, reverse-engineer the program and find a valid code! Then, submit the code to the server.

The serveris located at:

hackyeaster.hacking-lab.com:1234

Important: Do not launch brute-force attacks on the server - you'll not be lucky with it!

Download assembly file

Solution
We got a little assembly source code, which was generated right from a compiled c script. For better
analyzing the assembly, | compiled it with gcc:

mbLy
embly

First | renamed the txt to .s so that | can compile the assembly-source-code with gcc. | found a
stackoverflow article about this topic. After the compilation, | only need to link the assembly and |
am able to debug the application.

For an easier analysis | load the assembly in IDA and looked at the decompiled source code:

int __cdecl main(ini: argc, const char **argu, const char *xenup)

int inputvar; // ers@s
4| _BYTE =bytevat; // r10@3
5| signed int edii; // edi@3
6| signed int calck; // esi@3
7| signed int calc3; // ecx@3
8| signed int ebxx; // ebx@3
9| signed int inputvar_1; // er9@3

18| int calc_add_char; // er8@9

11| int calc1; // er9@id

12| int calc2; // edx@11

13| int result; // eax@14

14| FILE *secretfile; // rbx@18

15| int getcontent; // eax@21

16| char input; // [sp+6h] [bp-28h]@1

17| _BYTE bytes[7]; // [sp+1h] [bp-27h]@3

19| if (tfgets(&input, 28, stdin) || strlen(&input) <= 16)
20 goto LABEL_25;
21| inputvar = input;
22| bytevat = bytes;
23| edii = 03
24| calch = 0;
25| cale3 = 8;
26/ ebxx = 03
27| inputvar_1 = input;
28| while (1)
{

29

30 if (edii == 3 * (edii 7 8))

31 cale3 + nputvar;

32 calc_add_char = calch + inputvar;

33 if ((edii & 3) ==2)

3y calch = calc_add_char;

35 ++edii;

36 calci (unsigned __int8)(((unsigned int)(inputvar_1 >> 0x1F) >> 24) + inputvar_1)// calc1 %6x100
37 ((unsigned int)(inputvar_1 > Bx1F) >> 24);

38 calc2 = (unsigned _ int8)(ebxx + ((unsigned int)(ebxx >> 31) >> 24)) - ((unsigned int)(ebxx >> 81) >> 24);// calc2%0x100

39 calc3 (unsigned __int8)(((unsigned int)(calc3 >> 31) >> 24) + calc3) - ((unsigned int)(calc3 >> 31) >> 24);// calc3%6x100
48 calch (unsigned __int8)(((unsigned int)(calci >> 31) >> 24) + calcs) - ((unsigned int)(calci >> 31) >> 24);// calcs%6x168
e if (edii == 16)

42 break;

43 inputvar = xbytevat; /7 INPUT char +1

4y ebxx = calc2 + inputvar;

45 inputvar_1 = inputvar + calci;

46 if (t(edii & 1))

47 ebxx = calc2;

48 ++bytevat;

y9| 3

58| if (calct == Bx85 && calc2 == Ox43 && calc3 == Ox4F && calck == BxBO)

51| ¢

52 usleep(500006u);

53 secretfile = fopen(“secret.txt", "r");

54 if (secretfile)

55 ¢

56 while (1)

57 £

58 getcontent = _I0_getc(secretfile);

41

http://stackoverflow.com/questions/7190050/how-do-i-compile-the-asm-generated-by-gcc

| rewrote the source to python and simplify the whole code:

calcl = 0
calc2tmp = 0
calc2=0
calc3 =0
calcd =0
i=0

mystring
inputvar = ord(mystring[0])
inputvar 1 = ord(mystring[0])

while 1:
if(i == 3*%(1/3)):
calc3 += inputvar
if (i&3==2):
calc4 += inputvar
i=i+1
calcl
calc?
calc3
calc4

inputvar 1%0x100
calc2tmp%0x100
calc3%0x100
calc4%0x100

if i==l6:

break
inputvar = ord(mystring[i])
calc2tmp = calc2 + inputvar
inputvar 1 = inputvar + calcl
if (not(i&l)):

calc2tmp = calc?

"123456789987654321"#test-input

Seems a little bit complicated. | rewrote the code, so that | can solve it with z3:

from z3 import *

#input vector

sO0,sl1,s2,s3,s4,85,86,87,88,89,s10,s11,s12,s13,s14,s15 = BitVecs('sO,
s2, s3, s4, s5, s6, s7, s8, s9, s10, sl11, sl12, s13, sl14, s15',32)

solver = Solver()
#only ASCII values from “ “ to “}”

sl,

solver.add (And(s0 >=32,s1 >=32,s2 >=32,s3 >=32,s4 >=32,s85 >=32,s6 >=32,s87
>=32,s8 >=32,89 >=32,s510 >=32,s11 >=32,s12 >=32,s13 >=32,s14 >=32,s15

>=32))

solver.add(And(s0O < 126,s1 < 126,s2 < 126,s3 < 126,s4 < 126,s5 < 126,86 <
126,s7 < 126,s8 < 126,89 < 126,510 < 126,s11 < 126,s12 < 126,513 < 126,s14

< 126,515 < 126))

#solver for calcl to calc4d

solver.add(0x85 == (sO0 + sl + s2 + s3 +
sll + s12 + s13 + s14 + s15)%0x100)
solver.add(0x43 == (sl + s3 + s5 + s7 +
solver.add(0x4f == (sO + s3 + s6 + s9 +
solver.add(0xb0 == (s2 + s6 + s10 + sl4
if solver.check() == sat:

m = solver.model ()

print m
else:

print "nope"

42

s4 + s5 + s6 + s7 + s8 + s9 +

s9 4+ sl1l1 + s13 + s15)%0x100)
sl2 + s15)%0x100)
)%0x100)

sl0 +

After executing the script | got the following answer:

ida.lo\/es.you

43

Challenge 20 — Humpt’s Dump

Task
1
Humpty's Dump
You got hold of a dump of Humpty Dumpty’s secret egg database.
Search and extract the egg hidden in the dump!
Hints
® The'puzz'is not more than 8 chars, letters only.
#® The decryption of the file can be done using AES_DECRYPT().
Download the dump
Solution

In this challenge we got a MySQL Dump. For better work | imported the dump in the following order
to a MySQL database:

humpty routines.sql
humpty uzr.sql
humpty kee.sql
humpty fyle.sql

PwNPE

After this | analyzed a little bit deeper the routines:

CREATE DEFINER= root @ localhost®™ PROCEDURE " GetPuzzMishMash" (
IN p puzz VARCHAR (40) ,
IN p sawlt VARCHAR (1) ,
OUT p mishmash VARCHAR(40)

)

BEGIN
DECLARE p tmp VARCHAR(50) ;
SET p tmp := CONCAT(p sawlt, '.', p puzz, '.', p_sawlt);
SELECT SHAl (p_tmp) INTO p mishmash;

END

That’s the function for the hash in the uzr-table. SHA1(salt.pwd.salt)! The puzz is also letters only and
8 chars are bruteforcable. So | tried to bruteforce the hashes with cudaHashcat.

Content of 2016hackyeaster.txt:

943£9ecbbd91306a561d0e3c15e18ee700007083:abcd
915d253cb5ba6f0a220bca83e2d6d3258af15e68:nmlk
1742ae4507£c480958e2437104e677e70aa5e857:jklm
0cf32£8£418659f23£8968d4£63ea5c98b39£f833:zyxw
de2278f5bcafcbb097ecclfb54e5ab8a9%e912c55:efgh

Content of mask.txt

.21,
L2171,

44

212171,
L21717171.
L217212121°21.
L21217217217217°1.
L2171721717217°17°21.
L2121212121°121°21.

And with the following command | am able to crack the hash:

cudaHashcat64.exe -a 3 -m 4900 20l6hackyeaster.txt -1 ?1?u mask.txt

With that | test all passwords from a-zA-Z with a length from 1 to 8 and they are beginning with a dot
in the beginning and in the end. After a while | got the following result:

0cf32£8£418659£23£8968d4£63ea5c98b39£833:zyxw: .snakeoil.

III

So our puzz is “snakeoil”. With that we can recover the key with the DeekryptKee function. With the
following MySQL-Query you get the Kee:

call
DeekryptKee ('snakeoil', '1ABF4B7CD25C61FDFOE74EC2BFB43BD1C2D8ECD803AFA3AA3T76
F4C0000052813', @KEE); select QKEE;

| got for the key the value “jpP8HeocEC50CCBqdfIN3”. Now we can decrypt the file from the
database and save it. | used the following MySQL Query for that:

select aes decrypt((select blahb from fyle where keeid=2332),
'JpP8HeoEC50CCBgdfION3"') into dumpfile ‘egg.png'

In my MySQL Database folder | found the image:

45

Challenge 21 — Crypto Council
Task

Clever crypto brains had a little get-together. Find out who they are and break the riddles
they created! Each plain text contains a password - once you've got them all, enter them in
the Egg-O-Matic below. Lowercase only.

DV D UXOH PHQ ZRUUB PRUH DERXW ZKDW WKHB FDQW VHH
WKDQ DERXW ZKDW WKHB FDQ SDVVZRUG LV FDUWKDIJR

4423154215 2443 3334 52244433154343 4334
1442151114214531 3334 11131345431542 4334
4415424224123115 1143 442315 13343343132415331315
44231144 145215313143 2433 442315 2315114244 3421
1551154254 321133 3515313435343333154315 2443 442315
3511434352344214

EHIIKT YFC FTEU QK PLTPWBY MQYTNVZW LAJ JGGN ZVLD A
EWTAE WIEXLP QF IHV DAALROW DF JIACT GWMGCRQF WU
NSIHVZ BTAE IJGAEOWS FFZ ZXM KW ZPVV | UAAJAARAC
MVIJCRBADN ZV HPRZA TAAZAW SE MQYTNVZW HTLLATD XZWTK
RVV WESZWL UELWG AUZAPNLA LUREMTJS RVV YERV VDRRB SI
TYM SVE FN SVE JMNTNKMWC HV MFIEIMV IHV LAELFUSIIT
AWGVZKW PNU ZWBAZVWS TYMIT FFZ LWIIBQ NERZK UIMM
QTAIA ACTF PAH CRZWTR YM SRCFUHPNZMV IHV NJTNTP WCVFG
DDUZA SSHVUSG DV OJXGEIF 10 KPW SIVB GU WFZEH AJ | BINZWJ
HETZWIAIG ZT EEBWGEU BZT SVZNXCV WX IHV LMZE FN FTVVZK
PS YOQK HETZWIAIG S EOJQLXOE PW WECL MCTZT LWE UMSIHJ WX
IHV LMZE RVV WIJ AGC HV IDHO JMJKEU IK P SVKITTRZQ 10
YMFGY ZQA

WEN XQWVIBQZ KGQEAL TWB WEH GKQCW QLTBAKBTU LKIQTME
DWCOAKWZAKNB BKMETP WEW NOTHPA HWB GBXHCEWG IA
OTTQPWD SEATWCWNBA NZW HTO BHQWG HIWAL MCMG
LQWVIBQL TOF QLFVCHWG WEW XNW FM WET NGQEAL
QWBDSCMF KO CPWCKWMAX

46

Solutions

The first picture is Caesar. So a quick Caesar bruteforce attack reveals it is ROT23. It gives us the
following text:

AS A RULE MEN WORRY MORE ABOUT WHAT THEY CANT SEE THAN ABOUT WHAT
THEY CAN PASSWORD IS CARTHAGO

The second picture shows Polybios. | did a manual analysis of the Polybios-Crypto and got the
following results:

|1 2345
1/ABCDE
21F I _
3ILMN O P
4] RSTU
51V W XY

there is no witness so dreadful no accuser so terrible as the
conscience that dwells in the heart of every man peloponnese is the
password

The third picture shows Vigenére. Because | am lazy to do it manually, | bruteforced it online:
http://www.mygeocachingprofile.com/codebreaker.vigenerecipher.aspx

After looking in the messages, | found the right key at #38, which is “parisparis”. The deciphered text
ist:

phrase you need is alchemy vigenere was born into a noble family in
the village of saint pourcain his father jean arranged for him to
have a classical education in paris blaise de vigenere studied greek
and hebrew under adrianus turnebus and jean dorat at the age of age
seventeen he entered the diplomatic service and remained there for
thirty years five years into his career he accompanied the french
envoy louis adhemar de grignan to the diet of worms as a junior
secretary he entered the service of the duke of nevers as his
secretary a position he held until the deaths of the duke and his
son he also served as a secretary to henry iii

The last picture shows Playfair. This was little bit challenging, but after | read the history on
http://www.crosswordman.com/cgi-bin/playfair | tried the key “wheatstone”. And indeed it worked!

THE PLAYFAIR CIPHER WAS THE FIRST PRACTICAL DIGRAPH SUBSTITUTION
CIPHER THE SCHEME WAS INVENTED BY CHARLES WHEATSTONE BUT WAS NAMED
AFTER LORD PLAYFAIR WHO PROMOTED THE USE OF THE CIPHER PASSWORD IS
BLETCHLEY

With all bold words from the deciphered texts, you are able to get the egg:

http://www.mygeocachingprofile.com/codebreaker.vigenerecipher.aspx
http://www.crosswordman.com/cgi-bin/playfair

Challenge 22 — Dumpster Diving

Task
Dumpster Diving

You've sniffed some password hashes of a web site;

hash 1: fad202a6e094dd&f1d63da8bdfésb3ba039971d3
hash 2: f71elb0bSb3a57d864c2e5fTbd6dd90f66b5aTdE
hash 3: 84c6bcb681b79b650b53f9f3a8ba24e1e470d348
hash 4: 0d6bb0df8918168798cebb7T0014aebB81achbceTt

However, none of your tools succeeded in cracking the hashes. As a last resort, you inspected the

dumpster of the software development company which created the web site. And indeed you found

something: a paper with a part of the hash calculation code.

Can you crack the hashes now?

ho = 0x10325476
h1 = 0x98BADCFE
h2 = 0xEFCDAB8Y
h3 = 0x67452301
h4 = 0x@F1E2D3C

bytelen = len(m)

bitlen = 8 * bytelen

m += b'\x80'

m+=b'\x00" x ((56 - (bytelen + 1) % 64) % 64)
m += struct.pack(b'>0', bitlen)

for i in range(@, len(m), 64):
w=[0] x 80
for j in range(16):
wlj] = struct.unpack(b'>I', m[i + 4xj:i + 4xj + 4])[0]

for j in range(16, 80):
wlj] = rotate_left(w[j-3] ~ w[j-8] * w[j-14] ~ w[j-16], 1)

a=ho
b=h1
c=h2
d=h3
e=h4

for i in range(80):
if 0 <= i <= 19:
fi=idi2 (b6 (c2d))
k = 0x5A827999
elif 20 <= i <= 39:
fi=htc2d
k = 0x6EDIEBA1
elif 40 <= i <= 59:

48

Solution

| researched some parts of the algorithm on google. It reveals it is SHA1, but h0-h1 are the magic
values are different. So | grapped the source code of oclHashcat and changed the
“include/constants.h” at line 62:

#define SHAIM A 0x10325476u

#define SHAIM B 0x98badcfeu

#define SHAIM C Oxefcdab8S9u

#define SHAIM D 0x67452301u
#define SHAIM E 0x0fle2d3cu

After this | compiled the source code and bruteforced with the following command:

oclHashcat64.exe -m 100 hashes 2016.txt -r rules\TOX1C.rule
E:\dict\eNtrOpY ALL sort unig.dic

You find eNtrOpY ALL sort unig.dic in an interesting Article on the internet ©

After 6 Minutes everything was cracked ;)

49

http://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/

Challenge 23 - Heizohack
Task

Can you crack the Heizohack?

The password for the Egg-O-Matic is hidden in the image.

-
o

P e

Solution
Another steganography, another time for StegSolve! The most interesting parts are the Red 0, Blue 0
and Green 0 Channels. They mostly look like the same. Here is the Red 0 channel for example:

50

RrETT= muzss) yd E.I svio2psi2 | |

glaH saylsnA alid

So | tried the Data Extract function from StegSolve:

Extract Preview

Bit Planes Order settings
Alpha 7 6 5 4 3 X 1 0 Extract By @ Row Column
Red 7 6 5 4 3 = 1 v|0 Bit Order (= MSB First LSB First

Green T 6 5 4 3 2 1 [0 3
Bit Plane Order

Blue 7 6 5 4 3 2 1 [0 ® RGB GRB
RBG BRG
Preview Settings GBR BGR

Include Hex Dump In Preview [v|

Preview Save Text Save Bin Cancel

After | saved the binary, | got the following Image:

51

Chaffing Cart
bit: r
MAC: rég@b®a==

In Stegsolve | noticed there are some differences at the top 3 pixel lines:

| £| StegSolve 1.3 by Caesum ﬁ - l':' (S| e

File Analyse Help
R&dphne;

Chaffing Tart

o T

Another hint is within the image. Bit:r, MAC: r xor g xor b xor alpha == 1. So | wrote a little script,
which shows me every pixel with the condition “r xor g xor b xor alpha == 1":

from PIL import Image

img = Image.open("r0g0b0 trim.png")
pix = img.load()
X,y = img.size

for bbb in xrange(0,3):
for aaa in xrange(0,x):
r,g,b,a = pix[aaa,bbb]
vxor = r*g”b*a
if (r*g”b*a)é&l ==
print pix[aaa,bbb]

52

If you look at the red channel you noticed something familiar. If you replace 22 with a 0 and 23 with
an 1 you get a binary ASCII code! So | modified my script:

from PIL import Image

img = Image.open("r0g0b0 trim.png")
pix = img.load()

X,y = img.size

solution=""

for bbb in xrange(0,y):
for aaa in xrange(0,x):
r,g,b,a = pix[aaa,bbb]
if (r*g”b*a)é&l ==
#print pix[aaa,bbb]

if r == 22:
solution += "0O"

if r == 23:
solution += "1"

decode = ""
for i in xrange(0,len(solution)/8):

decode += chr(int(solution[(i*8):(i*8+8)]1,2))
print decode

lostinthewoooods

And we got the next egg ©

53

Challenge 24 — crunch.ly
Task

crunch.ly

Do you know crunch.ly, the fancy new URL shortener? It was used to create a short URL for Hacky Easter.
In order to lure people onto the web site of your alternative hacking competition "Evil Easter”, you

decide to attack this service.

What you know

® Short URL for Hacky Easter: http:ffcrunch.ly/IlU66SMI
® Web site of crunch.ly (not a real domain!); OPEN WEB SITE

e Algorithms used on the web site: DOWNLOAD

Your mission

1. find 2 URL starting with http://evileaster.com, which produces the same short URL
2. make the web site store your URL, instead of the original URL
3. open the short URL on the web site

4. do not bomb or DoS the server - you'll have no luck with it; cracking must happen offline

Solution

We got both functions, how Short URL got calculated and how Tickets are created. So at the first part
we need to recover the key. The full Key is 128 bit, so the normal key (128-1)/3=42bit! One Character
have 8bit, so we search for a key which is 5 chars long. This should be an easy task. First | tampered
the whole process of creating and saving a short URL. | got the following data with that:

url = "http://asdf.de"

shorturl = "TNUJJLQ"

encrypted ticket =

" fUbbAKUKBsUgSFwl13C5ItfNJJPFOYfOVucpifACVZWBAPC+SXpSt/rwoMDEu7p8dad4dad9Jdr001
wSqJ/FzCKHig=="

With that knowledge | am able to bruteforce the key. | re-implemented the cryptTicket function and
wrapped a bruteforce attack around that function:

import hashlib

import base64

from Crypto import Random
from Crypto.Cipher import AES

def pad(s):
return s + b"\0" * (AES.block size - len(s) % AES.block size)

54

def encrypt (message,

key, key size=128):

message = pad(message)

iv = "hackyeasterisfun"

cipher = AES.new(key, AES.MODE CBC, iv)
return cipher.encrypt (message)

def decrypt (ciphertext, key):
iv = "hackyeasterisfun"
cipher = AES.new(key, AES.MODE CBC, iv)
plaintext = cipher.decrypt(ciphertext)
return plaintext.rstrip(b”"\0")

iv = "hackyeasterisfun"

bs = "abcdefghijklmnopgrstuvwxyz0123456879ABCDEFGHI JKLMOPQRSTUVWXYZ"
url = "http://asdf.de"

shorturl = "TNUJJLQ"

encrypted ticket =

"fULLAKUKBsUgSFwl13C5ItfNjJIJPFOYfOVucpifACVZWRBAPC+SXpSt/rwoMDEu7p8dad4ad9Jdr001

w3SqJ/FzCKHig==""

encdata = encrypt ("

test", KEY FULL)

#print base64.b64encode (encdata)
print decrypt(encdata, KEY FULL)

for a in bs:
for b in bs:
for ¢ in bs:

for d in Dbs:

for

e in Dbs:

KEY = a + b + c+d+e

#print KEY

KEY FULL = "x"+KEY+KEY+KEY

plain = base64.b6d4encode (url)
plain += "(@" + base6d.bb6dencode (shorturl)

decoded = baseb64.bb64decode (encrypted ticket)
txt = decrypt(decoded, KEY FULL)
#print txt
if txt[:5] == plain[:5]:
print KEY

Now we know that the key is “tKguF”. The next step is, that we need an URL that starts with
“http://evileaster.com” and the short URL is IU66SMI. After analyzing the calculateShortUrl function,
| noticed that IU66SMI is base64 and is the beginning of the sha256(url). For better understanding:

IU66SMI==is in hex 453de931

Sha256(“http://hackyeaster.hacking-lab.com”) is
453de9316a0d3ae749261bb891930b4561d4a99ee9eb462548bf0f868b079957

With that knowledge | was

able to write another bruteforce script, to get the right

“http://evileaster.com” URL shortened. My approach was to append a numeric parameter like
“http://evileaster.com/?1234”.

55

import hashlib
import base64

shorturl = "IU66SMI="
hexcode = base64.b32decode (shorturl) .encode('hex")
pre = "http://evileaster.com/?"

for i in xrange(0,9999999999999999) :
after = str (i)
goal = hashlib.sha256 (pret+after) .hexdigest () [:8]
if hexcode == goal:
print pre + after

So | started the script and went to bed. At the next morning | got the following URLs

http://evileaster.com/?10691651141
http://evileaster.com/?12905523265
http://evileaster.com/?15399599367
http://evileaster.com/?17899621795

The right injection is within the saving process. With the following script | created my evileaster
ticket:

import hashlib

import base64

from Crypto import Random
from Crypto.Cipher import AES

def pad(s):
return s + b"\0" * (AES.block size - len(s) % AES.block size)

def encrypt (message, key, key size=128):
message = pad(message)
iv = "hackyeasterisfun"
cipher = AES.new(key, AES.MODE CBC, iv)
return cipher.encrypt (message)

def decrypt (ciphertext, key):
iv = "hackyeasterisfun"
cipher = AES.new(key, AES.MODE CBC, iv)
plaintext = cipher.decrypt (ciphertext)
return plaintext.rstrip(b"\0")

iv = "hackyeasterisfun"

KEY = "tKguF"

KEY FULL = "x"+KEY+KEY+KEY

url = "http://evileaster.com/?10691651141"

#generate shorturl from url
shorturl test = hashlib.sha256(url) .hexdigest () [:8]

shorturl = "http://crunch.ly/" +
base64.b32encode (shorturl test.decode('hex'))
shorturl = shorturl.replace("=", "")

#build ticketformat --> the last chars are padding for $1l6==
#are there missing

plain = base64.b6d4encode (url)

plain += "@" + base64.b64encode (shorturl)
+"\x0f\x0f\x0f\x0f\x0f\x0f\x0f\x0F\x0Ff\x0f\x0f\x0f\x0f\x0f\x0f"

56

encdata64 base64.b64encode (encrypt (plain, KEY FULL))

encdata64 = encdata64[:128]
encdata64 = encdata6d.replace("+", "%2B")#manual html encoding
encdata64 = encdata6d.replace("/", "%2F")#manual html encoding

print encdata64 #print ticket

After getting the evileaster ticket | called the saving URL with the ticket:

http://hackyeaster.hacking-
lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%
2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMI8pSI3MKgl1BCqakj3kECSI2gmBRey4fMOa
SVSIcl2WfztwfBCK1

| get a status code 0, which means the evil short URL is saved. Now | can go to the short URL>:D:

http://hackyeaster.hacking-
lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI

{

"status": 20,

"url":
"http%$3A%2F%2Fhackyeaster%s2Ehacking%$2Dlab%2Ecom%2Fhackyeaster%2Fimages%2Feg
g24%5FbHIrQhlVR141TPmapETM%2Epng"

}

And the final URL to the last egg is http://hackyeaster.hacking-
lab.com/hackyeaster/images/egg24 bHIrQh1VR141TPmapETM.png

57

http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=save&ticket=Hgo3UsPWbH%2B4kkfQwZ0dOEWzKmGC5YiDB%2BLWRUtYh7c4Whym7tZRF6AgkXVSdFgRrG59VNbpwGyuMl8pSI3MKg1BCqakj3kECSI2gmBRey4fMOaSVSlcI2WfztwfBCK1
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI
http://hackyeaster.hacking-lab.com/hackyeaster/crunch?service=go&shorturl=http%3A%2F%2Fcrunch.ly%2FIU66SMI
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg24_bHIrQh1VR141TPmapETM.png
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg24_bHIrQh1VR141TPmapETM.png

Web-Submission Bomb

After | saw, that there is possibility to submit eggs on the website, my first idea was: “Submit all egg’s
at 13:37”. For that mission | wrote a little python script. The first step was to read all QR-Codes:

from grtools import OR
for i in xrange(1l,25):

gr = QR(filename="egg/egg"+format (i, "02d")+".png")
if gr.decode():
print str(i)+ " : " + gr.data

The Output was every QR-Code. After this | created a script for the time bomb and submitting all
eggs at 13:37:

import requests
import time

sEggs = ["1fQArOSgpdSCBr8zXove" ,#01

"P2kVgrkD2ykiNcwWAAKvV" ,#02
"FUYEMZoOCLis7tPvs5pg",#03
"dLYFunszMowTRHovQx2y", #04
"X8pfJTkxJeRXObMHZSTP" , #05
"mGMzyuWngvnC014Irg5S", #06
"30gwkgZmzaFUvPBwnKr8" ,#07
"B6gZYdONrcSnR1D1vQO3",#08
"vgOObZR6V)xuwRkBVmM2F" , #09
"QOXmo6kvOYt3ATkc9rDnk" , #10
"wjlKxyRNWcLnyhdXhHCV" , #11
"kR4ZCgRneYR27YAYr8eE", #12
"Jv1801PUI9yfuJDWIJFi", #13
"QabmiycTGMkfXUeliOeJ",#14
"IMv1xX8LZGMOVspECD1b", #15
"7dUDQDhMQkLYsSQTMJIg62" ,#16
"nYa3ktAoTAQc6yxMAGOM" , #17
"830HadUPAeWRfd6YBvet" ,#18
"WCeZB8yUTdgjayQol2KS", #19
"PRKuX3CklkoZWwfOHbpK" , #20
"cH3zySmRf29wCQPETFSK" , #21
"Jopfr31iCijbpThSfHk61", #22
"mwBDDBrer7gemsD7RDSE", #23
"avHJIJ56JeUvz8fr7wkGR" #24

1

ticket = "112802e602cd6588086549e07edb3849e4ac1b502945791£8d2b4e8ab69504e8"
name = "TheVamp"
url = "http://hackyeaster.hacking-

lab.com/hackyeaster/json?service=solution"
cookies = dict (JSESSIONID="6C1600800B538C57CRB2EAE2EA959550™)
#time bomb
while 1:
t = time.localtime(time.time())
if t.tm hour >= 13 and t.tm min>=37 and t.tm sec>=01:
print "start" + str(t)
break

58

print "letsgo"”
i=24
while 1:
if 1 >0:
print "code "+4str(i)+": "+ sEggs[i-1]
postdata = {"code":sEggs[i-1],"name":name, "ticket":ticket }
r = requests.post(url, data=postdata)
print r.text
i=1i-1
time.sleep(0.65)
else:
break

Happy Easter was a lot of fun. Thx for this journey © see you next year!

59

