Challenge 1 - Puzzword

In you look closer to the picture, you notice the missing letters “ACEHKRZ”. This is an anagram of
“HACKERZ”. Solution Number 1 ©

Challenge 2 - It's in the Media
The QR Code is covered with the word “NO” and the hint is “It’s in the Media”. Look in to the source
code and search “media”. You will find the following code:

Line 19:
<style>

.page { background-color: white !important;} .h {
display:none;} .i3 { height: 4%; width: 4%; background: #fff;}

.02 { height: 4%; width: 4%; background: #000;}.11 { height:
4%; width: 4%; background: #000;}

.x5 { height: 4%; width: 4%; background: #fff;}@media print
{body {-webkit-print-color-adjust: exact;}

.h { display:block;}.11 { height: 4%; width: 4%; background:
#000;}.x5 { height: 4%; width: 4%; background: #000;}}

</style>
If you erase the CSS Element “@media”-element, the “NO”-Label will disappear and you got the
solution:

=], [s]
o

sl

Challenge 3 - Lego Stego
The LXF-File is a normal ZIP File. If you unpack the zip file you will get a PNG File and a LXFML-File.
The last one is a normal XML file. On line 4 you will see, which program used this format:

<Application name="LEGO Digital Designer" versionMajor="4" versionMinor="2"/>

Go and download the LEGO Digital Designer and load the LXF file in it. If you look from the site you
will notice, that there are 3 layers.

Erase the third layer and all the stones above and you will see the QR-Code

I0Aley 10 Ol A0 Gty aln ole Ol oln ol0 T10 B ols ol ol ola o 0 T O al o Gl el lo ol 2l ol

Challenge 4 - Twisted Num63rs

In this Challenge you should sort the values in ascending order. Here are the converted values, in

ascending order:

Original Converted
sqrt(1296) 36
Pi A Pi 36,46215
ZmIimdHk= 50
Middle C [Hz] 261.6
10101111000 1.400
303240 (oktal) 100.000
2720 1.048.576
13 MiB [bytes] 13.631.488
299.792.458

Speed of Light [m/s]

127.0.0.1 as Integer

2.130.706.433

java.lang.Integer.MAX_VALUE

2.147.483.647

8 YiB[bytes]

9.671.406.556.917.033.397.649.408

Challenge 5 - Phone Fumbling

After a while it was easy to realizing that the bars are influenced by the following things:

e Barl: time (only one minute or so)

e Bar2: gyroscope (play with your smartphone, that you get the right direction)
e Bar3: gyroscope (play with your smartphone, that you get the right direction)
e Bar4: battery / charging value

Hacky Easter 2015

Phone Fumbling

In this challenge, you need to play with your phone a
bit. Try to find out what controls the four bars, and

make them reach the full width (all at the same time).

Note: if the bars don't show up, it means that your

device does not have all sensors necessary...

Back

Challenge 6 - Hack to the Future

The following message is written in Morse-code

"dah-dah-dit dit dah-dah-dah di-dah-dit dah-dah-dit dit dah-dah dah-di-dah-dit di-di-dah-dit di-dah-
di-dit dah-di-dah-dah"

Decoded it is the solution code: “georgemcfly”

Q

. Time Machine
Failure!!

You arrived three
months too early.
Fix time controls!

geo rgemcﬂﬂ

Wait we are to early. Set the local time 3 months later and we get the solution.

georgemcfly

Challenge 7 - Vista de la Calle

On the iPhone the Challenge was broken and with the fix you are already on the right map. Look in
the sky and you will see the QR-Code. The only thing you need is to make a border with the same
color. Something like this:

Challenge 8

To get to the spreadsheet you need a link from an other spreadsheet, so that you can replace the ID:

The general link looks like this: https://docs.google.com/spreadsheets/d/[ID]/edit?usp=sharing

So the original Link is the following:

https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx HVXWrRXDvwCnVX2ih0jYp1CA/ed
it?usp=sharing

Open the spreadsheet in excel and sort the top values in line 1 in ascending order:

AB CLE F GOH L JELMPMOQPQHRS I UV WY £A
012 3 45867 8 9101121314 151617 181920 2122 23 24 25
3 H

19
10
1
21
22

L I N o (R S W B U (R S

o oa

16
4 |
2
12
"
25
24
7
20

b
18

14
13 |

17

el = R i =]
[SRR, T O TR SR S

Fd Med
L= * I+

- .=
0=

3|23 .

15
25| b

% 9 - i

27

Fsd [od [ed
= g

Now make a filter over A-Z and sort the column in ascending order. And now the QR-Code appear:

https://docs.google.com/spreadsheets/d/%5bID%5d/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx_HVXWrRXDvwCnVX2ih0jYp1CA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx_HVXWrRXDvwCnVX2ih0jYp1CA/edit?usp=sharing

= Onown ks W kA

T N T N R i B Rl =i il il = =R
(AN I = TR T T = R B« "R, B S SV IR TR S

]

K LMMNOPOQRSTUWVWXY ZAA

v v L v v L v L v v L

v v L v v

Challenge 9 — Fisheye
If you start the hackyeaster app, right at the beginning you will see the egg number 9. Make a
screenshot or something like this. You can also unpack the apk to get the image.

| used in GIMP the Whirl and Pinch Filter to get some results:

m

< | i [+

Preview 1]
Whirl angle: B 000 3
Pinch amount: | [} {'0,200 ?
Radius: a aEl,OOO E

Help 0K Cancel

Challenge 10 - Thumper's Den

After | realized, that | am able to look at the baskets of our players, | came up with the idea to look
into Thumpers basket to:

http://hackyeaster.hacking-lab.com/hackyeaster/eggs.html?name=Thumper

Egg Basket of Hacker Thumper

http://hackyeaster.hacking-lab.com/hackyeaster/eggs.html?name=Thumper

Challenge 11 - You've got Mail

Extract the zip file and open the inbox file with a text-editor
On line 311 you will see the beginning of the attachment:

--047d704501642dc6£905043957bd~-~
--047d7b4501642dc6£fe05043957bf

Content-Type: application/zip; name="signature.zip"
Content-Disposition: attachment; filename="signature.zip"
Content-Transfer-Encoding: base64

X-Attachment-Id: £ i007g8030

UEsSDBBQAAAATIAJ2iMUVXUTSFQfwAAJPOAAAKAAAAZWANXzEXxLNBUuZ3xYdzQbXhuuKmoU
1apNW7PU
V1SM+amOWrR+paFg7y2IUbX3rhghpShae0fsvfdKImLWSGImMCPH1+/8733v0/ePec+57
znvPc5/n
ed/YVwaad2jYaW7cuHFHW+ulO0YObN7H/XbfJ/570911f3bhBfuOVnon63+35ERg92r0Ox
PoBYgD46
gG9sDJI6erBAdIE+00Qe45Y60BPzIGV50vb8,/k3C61t+X3t0dIEIOWSeqr6+v/16/XgPp
+UXVU0zX
[...]

Save the base64-block in a separate file. The following command in Unix will help you, to decode the
base64 block in the zip file:

“baseb4d -i -d basebdencoded > signature.zip”
After extracting the zip you will get the image:

egg-1ll.png - (O [X

Image Edit View Go Help

Previous Next E ‘f -}

Challenge 12 - This is just a Test

The test form is really bad designed. The answers of the test are the following:

Question 1
What is the name of the popular port scanner, implemented by Fyodor?
Answer: nmap

Question 2

In the context of PKI systems, the shorthand "CRL" stands for "certificate list".
Answer: revocation

Question 3

A group of 100 people plans to use symmetric encryption for secure communication. How many keys
are needed to let everybody communicate with each other?

Answer: 4950

Question 4
Which hash sizes are supported by the SHA2 family? Choose two!
384 bit and 512 bit

Question 5
Which port number is used by Kerberos?
Answer: 88

Also you have the hidden field success, which is always false. Manipulate the request and send it with
HttpRequester or something like this to the ceh site:

5 HitpRequester « i 4 Mgl oy — L — o . ([P—— (ESHTER™)

RequEsT REsPONSE
URL hitp://hackyeaster. hacking-lab.com/hackyeaster/ceh?q1=nmap&q2=re\ + POST on http://hackyeaster hacking-lab. com/hackyeaster/ceh?q1=nmap&q2=revocation8q3=49508.g4=5128&q4=384&
gq5=884& ess=true [l
[POST 'I [bl] [£] I R0ST I [UL] Status: 200 OK ©) Browser @ Text [[] Pretty format View raw transaction
[MNew request] [Paste Request] [Authenlicatiun...] <aMicie Class— DOX POst = r
5 L <header id="challenge-header"></header>
Content to Senleeaders | Parameters ‘ <script=addChallengeHeader()</script=>
<p>
Name: success Value: true Congratulations, you passed!!
<fp=
<p>
flamg alue ﬂ} <div class="egglmage" style="background-image: url(./images
ql nmap -M u fegg_12_an8snbui1FeLO3Ugw89N.png) =< div=>
q2 revocation =t <fp=
Maove Down </article> 1
q3 4950 </div= 3
</div=
@ 512 <l
a4 384 </div= -
- 5 o
4 Heapers -
success true Date Sat, 02 May 2015 15:01:15 GMT
Server Apachef2.4.6 (CentOS) PHP/5.4.16 L
Access-Control-Allow-Origin * i
Access-Control-Allow-Methods POST, GET. OPTIONS
Access-Control-Allow-Credentials true
Access-Control-Allow-Headers ACCEPT, ORIGIN, X-REQUESTED-WITH, CONTENT-TYPE, AUTHORIZATION
Accept-Ranges bytes
= A4 407 A4477C00NENNN" S
History
Request Response Date Size Time B Clear history
POST http:ifhackyeaster. hacking-lab.com/hackyeaster/ceh?q1=nmap&q2=revocation&q3i=4... 200 OK Aug 2 2015 - 5:55:53 PM 14878 218 ms Capy to clipbaard

In the image above you see the image URL of the solution egg:

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg 12 an8snbuilFeLO3Ugw89N.png

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_12_an8snbui1FeLO3Ugw89N.png

Challenge 13

First | converted the MP4 into images.

ffmpeg -1 leety.mp4 -r 1.0 leet%4d.jpg

After | got all the images (901 images) | decided to scan some Images from 450 (middle point of 900)
up to 550 manually. | think image 525 was the right one and | got some points ©

Welcome to

:
-

Leet TV

Challenge 14 - Wise Rabbit's Return

The read the barcode with the following Website: http://www.onlinebarcodereader.com/de.html

The decoded barcode was "yckgkB2iV1rvNEfCoNiR".
This decoded content must be now converted in a QR-Code. | do this with the following site:
http://goqr.me/de/

If you scan the created QR-Code you got the points.

http://www.onlinebarcodereader.com/de.html
http://goqr.me/de/

Challenge 15 - Photo Shooting

This Challenge was a little bit crazy. The first way to solve was, take a photo of some tomatoes (most
of the screen should be tomato red) and take a photo of a grassland (most of the screen should be a
special green color). After this | got the following results:

The Second way was, unpack the APK-File from the hackyeaster app. You can download the apk file
with evozi’s downloader: http://apps.evozi.com/apk-downloader/

After unpacklng open the ressources.asrc and you will flnd some mterestlng values

resfdrawable hdplflc launcher. png'”"resfdrawable xhdpi/fic_launcher. png##resfdrawable xxhdplflc launcher. png-
mera. Versuchen S5ie, das GerArt neu zu starten.@EMARPositionieren Sie den angezeigten QR-Code in das weisse

rck . DEIA RS (@I ckyEaster ENAERERS = t £ ing = MNP DREIE g o @WME * £ * UWswMktBQUFBQUFBQURZRUFBQWIBQUFBWUFEQUEHQUEE
wROIOZi95a3FLLzh6TXpQLOSUNT IVMEJBUVASTIOWLySVVEZSLeEXZFhmCXRIibTcvZTHONyE 205 9mLytC211TILwOKaELITRS 80YUhpUCtHakkzL2s1U1
jg0ReWNuL31zcksvOWZYMS8vVzESaif0dVEaLytucTYvLeM5L2 4vKy8zKyEvLyEvLzhBQUFELOFBQUEvAO FEQVA4QUFBRCOBQUFBL3ABQQOKQVL4QUEE
IBQUFQUEFBQUQvQUFEQQOKL3dBQUFQOEFBQUQvQUFEQS 9 3QUFEUDMEQUFELOFBQUEvdO FEQVA4QUFEBRCOEQUFEL3dEQUFQOE FEQUQVvQUFBQS 9 3QUFEUL
JUFBQS93QUFBUDhEQUFELOFEQUEvAOFBQVA4QQOKQUFELOFEQUEvAOFBQVA4QUFBRCOBQUFBL 3dBQUFQOE FEQUQvQUFEQS 93QUFBUDREQUFELOFEQUES
\BQUFELOFBQUEvdOFEQVA4QUFBRCOBQUFEL3dBQUFQOEFEQUQvQUFEQQOKL3dBQUFQUEFBQUQvQUFEQS 93QUFBUDhEQUFELO FEQUEvAO FEQVA4QUFERC
10FBQVA4QUFBRCOBQUFEL3dEQUFQOEFBQUQvQUFEQS 93QUFBUDREQUFELOFEQUEvAO FEQVA4QQOKQUFE LOFEQUEvAOFBQVA4 QUFBRCOBQUFBL3dEQUE(
JBQUFBL3dBQUFQOEFEQUQvQUFEQS93QUFBUDhEQUFELOFEQUEvdO FEQVA4QUFBRCOBQUFBL3dBQUFQOE FEQUQVvQUFEQQOKL3dBQUFQOEFBQUQvQUFEQS
JIFELwOKQUFBQS93QUFBUDhEQUFELOFBQUEvAOFEQVA4QUFERC 9BQUFEL3dEQUFQOE FEQUQVvQUFEQS 93 QUFEUDhEQUFELOFEQUEvAO FEQVA4QQOKQUEE

FRATIT AATIEDN ANDATITDT 9 ADAAATATIR AATTEDS N AADATIEDT 2 ADATTEAAT D AT A T TS AS A S ATTEDTINV- DATTERT A TDATTE AR TDATIR A ATTED N AADATIEDT 9 40 ATTTAAT

From the Null-Byte and “E’E™” to the next Null-Byte is a double base64 encoded Image, which is the
QR-Code of this challenge.

http://apps.evozi.com/apk-downloader/

Funny fact, | solved the challenge the second way and didn’t noticed it. After a while | flipped out,
because the QR-Code of the Images doesn’t worked. | looked into my basket and saw that the
challenge was solved some hours ago :D

E "=

Decoded Image of the double-encoded base64 string

Challenge 16 - Ghost Room

In the Challenge Overview there is in the right bottom corner a light bulb which turns the light of:

Ghost Room ° Spot the Difference o

[S=5 RG-S T EEEPLAANE SN =)

m Cut'n'Place Q m Lots of Bots

"

o~

<= e »

When we turned off the light, we can go to the main part of the challenge:

There is a good hint. It is the GOST-Encryption. The password is “spooky”. | found an online decoder
here: http://www.tools4noobs.com/online tools/decrypt/

Encrypted Text:

d5++xytjbRiGwmgEecm63Kow7RZGAAHhK
VFsksHFuj/Anap7pWHDZ1XQw8DAApPUEN
R5EXOGUKTzGOtvSAICHkHq6NNnelL6ZUTX
€j8Taxz+kHK9w9U8dxTOSksZ4HKS2YYD

Key: spooky

Decrypted Text: http://hackyeaster.hacking-
lab.com/hackyeaster/images/egg 16 a3ellACKSy02sJ6LxXeh.png

And now we have our next solution ©

http://www.tools4noobs.com/online_tools/decrypt/
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_16_a3eIIACKSy02sJ6LxXeh.png
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_16_a3eIIACKSy02sJ6LxXeh.png

Challenge 17 - Spot the Difference

We got two images:

To get the difference, we play a little bit with the awesome stegano tool “Stegsolve” from Caesum. In
this Java-Tool you find the Image-Combiner. First load the differencel.bmp in to the tool and chose
the image-combiner with the difference2.bmp:

£ [e S|

suUB

Agent XOR

T W e

Save the image and look Mr. “Agent XOR” in the eyes:

|
.I.'-J L, =
That is not a real QR-Code, but when you compare the right eye, with the left you will notice that

some Pixels in the QR-Code are inverted like the right eye. Invert all Pixels in the white area and you

get the right QR-Code. See the pictures to understand, | don’t know how to describe it in better
English ©

Broken QR-Code Left eye + overlay of right eye

Invert all pixels in white area

Solution ©

Challenge 18 - Sharks on the Wire

Download the pcap file and follow the last TCP-Stream (Wireshark Filter: “tcp.stream eq 3”). You will
find really fast the Header with the Basic-Authorization:

GET /hackyeaster/sharks/sharks.css HTTP/1.1

Host: 10.11.0.48:8080

Connection: keep-alive

Authorization: Basic c2hhcmttYW46c2hhcmtzX2hhdmVfajR3cw==

Accept: text/css,*/*;g=0.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36

Referer: http://10.11.0.48:8080/hackyeaster/sharks/sharks.html
Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;g=0.8,de;g=0.6,1it;g=0.4

Decode the Authorization Part with base64 and you get the username:password
“sharkman:sharks_have_jdws”

Now we can Login in and look at the website with another login-panel. The last header in the TCP
Stream looks like this:

POST /hackyeaster/sharks/auth HTTP/1.1

Host: 10.11.0.48:8080

Connection: keep-alive

Content-Length: 82

Cache-Control: max-age=0

Authorization: Basic c2hhcmttYW46c2hhcmtzX2hhdmVfajR3cw==

Accept:

text/html, application/xhtml+xml,application/xml;g=0.9, image/webp, */*
;ag=0.8

Origin: http://10.11.0.48:8080

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36
Content-Type: application/x-www-form-urlencoded

Referer: http://10.11.0.48:8080/hackyeaster/sharks/sharks.html
Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;g=0.8,de;g=0.6,1it;g=0.4

user=supershark&pass=hashed%21%21%21&hash=b3f3ca462d3fa58b74d6982afl
4d8841b07499%4a

We see user supershark logging in with the hash b3f3ca462d3fa58b74d6982af14d8841b074994a.
You don’t to crack this, because you need only the hash (Pass the Hash-Attack). | manipulate the
POST-Request with Tamper-Data:

POST-Parameter Mame POST-Parameter Wert

user supershark
pass hashed %21 %21 %21
hash 62d3fa58b74dE982af14d8841 6074994 3

After sending the POST-Request, we got the solution:

Sharks on Wire

Challenge 19 - Cut'n'Place

On this challenge, the biggest hint was that it is a passphrase and not a password. A passphrase is
something like 20-40 Characters long. And now it is time for paper and scissors. Print the pdf and
play a little bit with the stripes. After a while | come up with the idea, that | weave the paper:

The Solution was: paperstripsmadebyshredder

Awesome Challenge and the last one | finished ©

Challenge 20 - Lots of Bots

"Robots have placed an egg on this web server. If you wanna find it, you need to think and act like a
bot. "

OK, let’s have a look at robots.txt:

User—-agent: EasterBot
Disallow: /
Allow: /hackyeaster/bots/bots.

User-agent: *
Disallow: /

The only thing you must add is “html”. So we got the following site:

http://hackyeaster.hacking-lab.com/hackyeaster/bots/bots.html

Oh | forgot to tell you, that you must deactivate JavaScript. Otherwise you will land on a Wikipedia
article of some famous bots ©

J J
MUFE WAFUB FOMU MOWEWE

“BAMA WABOKI PISAL FATATU FOMU WOSEBI SEJU SOWU SEJU - BAMAS MUFE WAFUB FOMU
MOWEWE"

After some research in google | found out, that the language is ROILA, the Robot Interaction
Language. The translated text is the following:

"you must make word of addition two and two - this be name of page"

Two plus two is four. So maybe we should try http://hackyeaster.hacking-
lab.com/hackyeaster/bots/four.html

http://hackyeaster.hacking-lab.com/hackyeaster/bots/bots.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/four.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/four.html

OK let’s have a look at the META-DATA.

<meta name="description" content="Robots talk in ROILA language:
eman egap eht esrever tsum">

<meta name="keywords" content="secret, page, robots, fun, hacky
easter, blrt, five, beep">

“eman egap eht esrever tsum” that is not ROILA. If you try to read backwards you get “must reverse
the page name”.

Reversing four is ruof and this is the site: http://hackyeaster.hacking-
lab.com/hackyeaster/bots/ruof.html

http://hackyeaster.hacking-lab.com/hackyeaster/bots/ruof.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/ruof.html

Challenge 21 - Cony Code

The hint tells us everything:
“Hint: 110 is blue, the rest's up to you...”
First at all | counted all colors:

White

Red

Pink

Black
Yellow
Blue

Light blue
Light green

N R WN P

Eight different colors! Fits perfectly in 3 bits. After this | came up with the idea of RGB, because all
colors in the cony-code are special colors in RGB.

RGB
110 - BLUE

You see, 1 means off and 0 means on. So my theory was red must be 011 and green must be 101. If
you going on, you get the following binary table:

RGB

110 - Blue

011 - Red

101 - Green

001 - Yellow

010 - Pink (Light Red)
000 - White

111 - Black

100 - Light Blue

Now you have the cony-code image. Replace the colors with the binary value. Read it line by line
from left to right.

Now you will get the following binary code:

011010000111010001110100011100000011101000101111001011110110100001100001011000110
110101101111001011001010110000101110011011101000110010101110010001011100110100001
100001011000110110101101101001011011100110011100101101011011000110000101100010001
011100110001101101111011011010010111101101000011000010110001101101011011110010110
010101100001011100110111010001100101011100100010111101101001011011010110000101100
111011001010111001100101111011001010110011101100111010111110011001000110001010111
110110101000110111011001110011011000110111010110100010111001110000011011100110011
100100000111111111111

If you converted this binary code to text you get the following output:

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg 21 {7g67Z.png y&x

And there is our solution.

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_21_j7g67Z.png

Challenge 22 - Hashes to Ashes

If you are familiar with hashcat, the task should be not a problem for you. | used cuda-hashcat on
windows for the following commands:

Hash: ADA2EEEBE7809857A57F6FEEAB2FFAEE24EAE7B1 (SHA1)

Command: cudaHashcat64 -m 100 -a 3 -o cracked.txt hashes.txt -1 1234567890
?1?171?1°1?1?171?1°1?1

Solution: 1199019170177790

Hash:
6BBF7528D9DD2959A7AFB37898425F67555F67F677987CAE7E86210A2C8A0DBDFC248EC2D7B2401
OF440BADC2223B4B5 (SHA512)

Command: cudaHashcat64 -m 1700 -a 3 -o cracked.txt hashes.txt -1 abcdefghijklmnopgrstuvwxyz
?171?1?1?1?1?1?1?1?1?1°1

Solution: hopelessly

Hash: B80814C5E0F386B0637163FD8AFEA929 (MD5)

Command: cudaHashcat64 -m 0 -o cracked.txt -r hackyeaster_upper.rule -r hackyeaster_subst.rule
hashes.txt wordlist.txt ?s?d

hackyeaster_subst.rule:
sa@,sb8,sc(,sd6,se3,sf#,sg9,sh#,sil,sil,sk<,sli,sl1,500,599,555,55&,st+,5v>,5v<,5%%,

(Attention, replace the comma with a line break)

hackyeaster_upper.rule : T0,T1,72,73,T4,T5,76,T7,T8,T9,TA,TB,TC,TD,TE,TF

(Attention, replace the comma with a line break)

Solution: DiscOvery.5

Before | got to the last one, | created some custom dictionaries. The first one was that all words are
lowercase (wordlist_lower.txt). After this | used the “prince processor” from hashcat, that I can
merge the dictionaries:

pp64 -o wordlist lower doubleword.txt --elem-cnt-max=2 <
wordlist lower.txt

This dictionary contains all words in lower case and also a mix, that are all words are combined with
each other. With this wordlist | am able to combine all passwords up to 4 times ©

Hash: 9791CBEOAE919A0330994A2D6BA26B8FOC3A1DA15C73BCESFCA39495881A6C90 (SHA256)
Command: cudaHashcat64 -m 1400 -a 1 -o cracked-txt hashes.txt wordlist_lower_doubleword.txt
wordlist_lower_doubleword.txt

Solution: enginebulbgoatimportant

Sadly most of the passwords appears on google after some time. So to solve most of them you only
need google, but this way is the better way to learn how hashcat works.

Challenge 23 - Beat the Nerd Master

This was my favorite challenge. Old school Monkey Islands fights, with nerd questions and answers. |
write a little python script to beat the nerd master:

#!/usr/bin
import soc

questions=
questions
questions
questions
questions
direction
questions
questions
questions
questions
questions
questions

answers=/[]

answers.append ("Won't work.

/env python

ket

[]

append ("Go 127.0.0.1 to your mummy.")
.append ("Go play with your toys, yellow-belly.")
.append ("I have more friends than you.")
.append ("This fight is like a hash function - it works in one
only.")

.append ("You should leave your cave and socialize a bit.")
.append ("You'll be Oxdeadbeef soon.")

.append
.append ("I bet you don't even understand binary.")

.append ("You must be jealous when seeing my phone's display.")
.append ("format C:")

"Af7ter thls flgh7, I wlll pwn ur b0Ox3n.")

(
(
(
(
(
(

I only support IPv6.")

answers.append ("That's not even close to be nerdy!"™)
answers.append("Yeah, but only until you update your Facebook profile with

a real pic

ture of you!")

answers.append ("Too bad you picked LM hashing.")

answers.append

"I'm not anti-social. I'm just not user friendly.")

(
(
(

answers.append ("Not as long as I have my Oxcafebabe.")
answers.append ("Check your settings - you seem to have chosen the Klingon

keyboard 1

answers.append("Sure I do.

persons.")

answers.append ("Not really - Your pixels are so big,

their own

ayout.")

Me and you, we are 10 different kind of
some of them have
region code!")

answers.append ("Specified drive does not exist.")

s socket
s.connect (
data=""
while data
data
print data
send = "y\
s.send(sen

while data
data
print data
data=""
while data
data
print data

send que
print send
s.send(sen

.socket (socket.AF INET,
("hackyeaster.hacking-lab.com',

socket.SOCK STREAM)
1400))

— nu.,

s.recv(1024)

r\nn
d)

wn o,

s.recv (4096)

mww .,

s.recv(4096)

stions[9].join ("\r\n")

d)

data=""
while data == "":

data = s.recv(4096)
print data

data=""
while data == "":

data = s.recv(40906)
print data

s.close ()

Challenge 24 - SHAM Hash

Everything is described in the PDF File. | write a little bruteforce programm in C#. | used also a C#
implementation of HashLib. The Main Idea is, that this encryption only have a protection of 6x6
character password. Cracking 6 different 6 character long passwords is not so complicated:

void attack(int beginsix, int steps)
{
string brutestring = "abcdefghijkimnopgrstuvwxyz1234567890!?";
string test = "hackyeaster2015isforeveryone!!";
string brutinhash = "757c479895d6845b2b0530cd9a2b11";
steps = (steps == -1)?brutestring.Length-beginsix:steps;
string[] splitter = new string[5];
string[] hashsplitter = new string[5];
for (inti=0;i < splitter.Length; i++) {
splitter[i] = test.Substring(i*6,6);
hashsplitter[i] = brutinhash.ToUpper().Substring(i*6,6);
}

IHash MD2 = HashFactory.Crypto.CreateMD2();

IHash MDS5 = HashFactory.Crypto.CreateMD5();

IHash SHA1 = HashFactory.Crypto.CreateSHAL();

IHash SHA256 = HashFactory.Crypto.CreateSHA256();

IHash SHA512 = HashFactory.Crypto.CreateSHA512();

string lolo="";

HashResult r = MD2.ComputeString(splitter[0], Encoding.ASCII);

lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(0,6);
r = MD5.ComputeString(splitter[1], Encoding.ASCIl);

lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(6,6);
r = SHA1.ComputeString(splitter[2], Encoding.ASCII);

lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(12,6);
r = SHA256.ComputeString(splitter[3], Encoding.ASCIl);

lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(18,6);
r = SHA512.ComputeString(splitter[4], Encoding.ASCIl);

lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(24,6);

int[] char_counter_arr = {beginsix,0,0,0,0,0};
bool[] notcracked = {true,true,true,true,true};

string temp ="";

string answer ="";

while (char_counter_arr[0] < beginsix+steps) {

string word ="" +

brutestring[char_counter_arr[0]] +
brutestring[char_counter_arr[1]] +
brutestring[char_counter_arr[2]] +
brutestring[char_counter_arr[3]] +
brutestring[char_counter_arr[4]] +

brutestring[char_counter_arr[5]];

if (notcracked[0]) {

r = MD2.ComputeString(word, Encoding.ASCII);
temp = BitConverter.ToString(r.GetBytes()).Replace("-","");
if (temp.Substring(0,6) == hashsplitter[0]) {
answer +="MD2: " + word + "\r\n";
notcracked[0] = false;
}
}

if (notcracked[1]) {
r = MD5.ComputeString(word, Encoding.ASCII);
temp = BitConverter.ToString(r.GetBytes()).Replace("-","");
if (temp.Substring(6,6) == hashsplitter[1]) {
answer += "MD5: " + word + "\r\n";
notcracked[1] = false;
}
}

if (notcracked[2]) {
r = SHA1l.ComputeString(word, Encoding.ASCII);
temp = BitConverter.ToString(r.GetBytes()).Replace("-","");
if (temp.Substring(12,6) == hashsplitter[2]) {
answer += "SHA1: " + word + "\r\n";
notcracked[2] = false;
}
}

if (notcracked[3]) {
r = SHA256.ComputeString(word, Encoding.ASCIl);
temp = BitConverter.ToString(r.GetBytes()).Replace("-","");
if (temp.Substring(18,6) == hashsplitter[3]) {
answer += "SHA256: " + word + "\r\n";
notcracked[3] = false;
}
}

if (notcracked[4]) {
r = SHA512.ComputeString(word, Encoding.ASCIl);
temp = BitConverter.ToString(r.GetBytes()).Replace("-","");
if (temp.Substring(24,6) == hashsplitter[4]) {
answer += "SHA512: " + word + "\r\n";
notcracked[4] = false;
}
}

char_counter_arr[5]++;

if (char_counter_arr[5] == brutestring.Length) {
char_counter_arr[5]=0;
char_counter_arr[4]++;

}

if (char_counter_arr[4] == brutestring.Length) {
char_counter_arr[4]=0;
char_counter_arr[3]++;

}

if (char_counter_arr[3] == brutestring.Length) {
char_counter_arr[3]=0;
char_counter_arr[2]++;

}

if (char_counter_arr[2] == brutestring.Length) {
char_counter_arr[2]=0;
char_counter_arr[1]++;

}

if (char_counter_arr[1] == brutestring.Length) {
char_counter_arr[1]=0;
char_counter_arr[0]++;

}

MethodInvoker inv = delegate{txt_debug.Text += answer + "\r\nbeginsix " + beginsix +
done";};
this.Invoke(inv);

}

The Code is really dirty. But | got with it the following solution with it:

label1 label? lzbel3 labeld

SHAS1Z: baapaw
MD2Z: Bepig
SHAT: Bovdsl
MD5: Soyldl
SHAZ56: Srlmbz

beginsi 30 doneMDZ: uaSySa
SHAZRE: ud2yp!

MD5: ud3na

SHABTZ: ukveuz

SHAT: ull775

beqinsi 20 done5SHAZRE: Odama
SHAB12: Ofj6m5

SHAT: [fr17g

MD5: Ogshk!

MD2Z: Duybey

beqinsik 35 doneMD5: aagidt
MD2Z: afpmagt

SHAR1Z: afSpt3

SHAZEE: angeca

SHAT: awwnt

I:ieglrlsg_ﬂ :_:Iune_S HAT: koyapw

| took the first password: “5¢p7ig5cy1dI5cv9915rOmbz5aapaw”

Congrats!

Challenge 25 - Jad & Ida

Unpack the ZIP file and analyze the JadAndlda.class file with JD-GUI. You will find on line 43 the
following code:

g2 ButifersedHeader i1n = new BuiferedHeader{new lnputStreamHeader|System.zin));
43 String k in.readline() ;
H String h kr
for (int z = 0; 2 < 10; z++) |
h = fizzle(rizzle(shizzle(bizzle{h)))):
1
48 if ("w30] pmWm<Y (0=21".equals{h})
f
49 System.ocut.println{"Congrats!™);
50 byte[] plain = Files.readallBytes(Paths.get({"33crit.kbin", new String[0])):

So you see, the program does something with your input and if the result is "v30] pmWm<Y(0=21"
you solved the challenge. Export the source code and try to compile it with your own code. | added
the following line between line 47 & 48 “System.out.println (h) ;”, tosee how the stringis
changed after the fizzle rizzle shizzle bizzle.

The ,,Erg” stands for “Ergebnis”. That is the German word for solution.

As you see | only change the first letter, and only the first letter changed after the fizzle rizzle shizzle
bizzle. The same thing happened with every other character. If you change the second character only
the second character in the encryption will change. With this information, we know that we can easy
bruteforce the password. | added the following code:

53 [/* 53: 45 =/ for (int z = 0; z < 10; z#+) {
54 JS% GB4: 4 *f h = fizzle(rizzle (shizzle(kizzle(h)))):
55 System.out.println(h) ;
56 /% 55: }
ST System.out.println("Exg: " + h);
5L String bruter = "abcdefghijkl opgratuvwryzABCDEFGHIJELMNOPORSTUVIWEYZ123456788 "
String solver = "v3(0] ;
—|for(int bruterstring = C; bruterstring < ; bruterstring++) {
g for(int alda = 0; alda < ; aldat++) {
String letters = "";
for({int neg = 0; neg < : megt+) {letters 4= bruter.charit (alda):}
String yoyo = letters;
= for (int z = 0; z < roZH) |
yoyo = fizzle(rizzle(shizzle(bizzle(yovo)})):
B }
char so0ll = solwver.charkit (bruterstring) ;
0 char =s0l2 = yoyo.charAt (bruterstring)
71 H if(soll = =0l12){
72 System.out.println("numk: "+bruterstring+” - "+bruter.charlt (alda));
7 break;
74 | }
75 | }
- Ly
78 /* G&: 48 */ if ("v30] pmim<¥ (0=21".equals (h))
7 J® 57: #f {
8 f# LB: 49 #=f Syatem.out.println("Congrats!m);
81 * 59: o = byte[] plain = Files.readAllBytes(Paths.get("s3cr3c.kbin”, new String[C])):

The idea is, when | found the right character, the bruteforce can jump to the next letter ©

After compiling this code, | got the following output:

Now we have the password: jadnldalOvecod3n and the s3cr3t.bin will be decrypted in an image file:

Challenge 26 - Clumsy Cloud

First let’s have a look into this Backup file http://hackyeaster.hacking-
lab.com/hackyeaster/files/passphrase backup.txt :

{

"name" :

"comment"

PIN.",
"params"
ngn
llh"
"i"
"k"
nan
npn

"Clumsy Cloud Backup",

: "Backup of your passphrase, protected with your secret

{
"ovaederecumsale",
"1.3.14.3.2.26",
10000,
128,
"2.16.840.1.101.3.4.1.1",
"8QeNdEdkspV6+1I177SEEEF4aWs5dl/auahJ46MMufkg="

After some research on google you will found out that "1.3.14.3.2.26" is the OID of SHA1 and
"2.16.840.1.101.3.4.1.1" is the OID of AES128-ECB. So the Clumsy Cloud have something to do with
SHA1 and AES128 in ECB mode.

In the second step we look into the APK File. Download the Hackyeaster APK file. You can download
it with Evozi’s downloader: http://apps.evozi.com/apk-downloader/

Decompile the apk with dex2jar and open the jar file with jd-gui. After some searching | found out,
that the Activity class has our main functions for clumsy cloud:

-#1 android.support.vd
-} com.panoramagl
=3 ps.hacking

-

Activity.class

protected WebView a;

) private boolean £ = false;
(-8 hackyeaster.android private SensorManager g;
£-[9] Activity private 3ensor h;
(B Activity private Sensor i;
< a:WebView private String j:
v 05 b Uni private String k:
&5 o Uni 1 private float[] 1;
o 65 d: Pattern 3 private float[] m;
o &: SecureRandom private int a(5tring paramString, Context paramContext)
- o f:boolean {
o g:SensorManager try
- o h:Sensor {
- o i:Sensor SecretHeySpec localSecretHeySpec = new SecretHeySpec(a(paramString, "ovaederecumsale”, 10000), "RES");
- 8 j:String Cipher localCipher = Cipher.getInstance("RES");
- o k:String 4 localCipher.init(2, localSecretKevSpec):
o 1 flost] String str = new String(localCipher.doFinal{Basefd.decode ("EQelNdEdkapVe+1T177SEEEFLaWa5dl/auahddfMuska=", 0)]);
- DownloadManager locazlDownloadManager = (DownloadManager)getSystemService ("download™):
) DownloadManager.Request localRequest = new DownloadManager.Request(Uri.parse("http://hackyeaster.hacking-lab.com/t
< a(:void localRequest.setTitle {"Hacky Easter™);
- @ a(ntent) : void localRequest.setDescription("Egg Download”):
@ a(String, Context) : int localRequest.setDestinationInExternalPublicDir (Environment. DTRECTORY DORNLOADS, "egg 26.png”);
- @ a(String, String, Context) : void registerReceiver (new d(this), new IntentFilter("andrcid.intent.acticn.DOWNLOAD CCMPLETE"));
@ a(String, String, int) : byte(] localDownloadManager.enqueus (localRequest);
@ afint, String) : void Toast.makeText (paramContext, "Downlocad started”, 0).show();
® b{:void , retum 0
- @ €0zint catch (Exception localException) {}
m d:void return 1;
@ e():void }
= f0:void

http://hackyeaster.hacking-lab.com/hackyeaster/files/passphrase_backup.txt
http://hackyeaster.hacking-lab.com/hackyeaster/files/passphrase_backup.txt
http://apps.evozi.com/apk-downloader/

We also have a function with some SHA1 encoding:

m

public static byte[] a(3tring paramStringl, String paramString?, int paramInt)
{
MessageDigest localMessageDigest = MessageDigest.getInstance ("5HAL™):
byte[] arraylfBytel = (paramString? + paramStringl).getBytea():
for (int m = 0;; n++)
{
if (n >= paramlnt)
{
byte[] arrayliByteld = new byte[l&];
Syatem. arraycopy({array0fBytel, 0, arraylfByte2, 0, 15);
return array0fBytel;
1
array0fiBytel = localMessageDigest.digest{arrav0iBytel);
}

This seems to be the main functions of clumsy cloud. We only need to implement this two functions
and try to get the right pin. We have a pin with 4 digits. This mean, we are able to bruteforce the pin.

| exported the two functions and rewrite them, so they are able to run in Java. Additionally | needed
the javax-crypto.jar. You can download it from here:
http://www.java2s.com/Code/Jar/j/Downloadjavaxcryptojar.htm

Here are

import
import
import
import
import
import
import
import
import
import
import

public
{

my source code:

java.io.Console;
java.io.PrintStream;
java.security.MessageDigest;
java.security.*;
java.util.regex.Matcher;
java.util.regex.Pattern;
javax.xml.bind.DatatypeConverter;
javax.crypto.Cipher;
javax.crypto.spec.SecretKeySpec;
javax.crypto.spec.*;
javax.crypto.*;

class something

public static void main(String[] paramArrayOfString)

{
for (int 1=0; 1<10000; 1i++){
String paramString = String.format ("%$04d", 1i);

try

{

String somebase6d =

"8Q0eNdEdkspV6+1I77SEEEF4aWs5dl/auahJ4oMMutfkg="";

Secret

SecretKeySpec localSecretKeySpec = new
KeySpec (a (paramString, "ovaederecumsale", 10000), "AES");
Cipher localCipher = Cipher.getInstance ("AES");
localCipher.init (2, localSecretKeySpec)

http://www.java2s.com/Code/Jar/j/Downloadjavaxcryptojar.htm

String str = new
String(localCipher.doFinal (DatatypeConverter.parseBase64Binary (someb
aseo6d)));

System.out.println (paramString) ;
System.out.println(str);
}
catch (NoSuchAlgorithmException localException) {}
catch (NoSuchPaddingException nopad){ }

catch (IllegalBlockSizeException blockshit) { }
catch (BadPaddingException badpaddd) { }
catch (InvalidKeyException invkey) { }

}//END FOR

}//END FUNCTION

private static byte[] a(String paramStringl, String paramString2,
int paramInt) throws NoSuchAlgorithmException
{
tryf
MessageDigest localMessageDigest =
MessageDigest.getInstance ("SHA1") ;
byte[] arrayOfBytel = (paramString2 + paramStringl) .getBytes();
for (int n = 0;; n++)
{
if (n >= paramlInt)
{
byte[] arrayOfByte2 = new bytel[l6];
System.arraycopy (arrayOfBytel, 0, arrayOfByte2, 0, 15);
return arrayOfByteZ2;

}
arrayOfBytel = localMessageDigest.digest (arrayOfBytel) ;

}catch (NoSuchAlgorithmException someshit) {
System.out.println (someshit.toString());
byte[] als = new bytel[l];

return als;

}

Also quick and dirty. After starting the java application | got something like this:

The PIN 7113 seems to be the right PIN and we got the egg:

Challenge 27 - Too Many Time Pad

Using a One Time Pad with the same key is a bad thing. For solving this Challenge | used the following
python scripts from SpiederLabs: https://github.com/SpiderLabs/cribdrag

The first step is, to XOR two intercepted Messages of your choice. For message 5 and 4 it is the
following command:

python xorstrings.py 71c26929e96931698e2865d816d3624b687cd6
6c8a7bbcel6a3161ddea60d755d42d4d6de”7

Now we get the XORed Hex-string 1d481245090300085342050f43074f06051b

python cribdrag.py 1d481245090300085342050£43074£f06051b

We try to enter some random well known English words like “the” “at” or something like this:
Bit by bit | was able to decrypt the messages:

60c46964£83879618e2878de539f6f4a6271d716 //20chars
enemy hase the bonbon

63c37a6cal’77792092602cc553¢c9684b //1l6chars
five oh oh seven
68d82c6bf4767£79dd617£9642d768057£63cl //19chars
mr bunny is the spy
6c8a’b6ce06a3161dd6a60d755d42d4d6de7 //18chars
i wear a black hat
71c26929e96931698e2865d816d3624b687cd6 //19chars
the hg is in london
6cda6d6df87764709c6c7bd357d361556d77 //18chars
ipadyoupadweallpad

And the last message is our solution:

ipadyoupadweallpad

https://github.com/SpiderLabs/cribdrag

