
Challenge 1 - Puzzword
In you look closer to the picture, you notice the missing letters “ACEHKRZ”. This is an anagram of

“HACKERZ”. Solution Number 1 

Challenge 2 - It's in the Media
The QR Code is covered with the word “NO” and the hint is “It’s in the Media”. Look in to the source

code and search “media”. You will find the following code:

Line 19:

<style>

 .page { background-color: white !important;} .h {

display:none;} .i3 { height: 4%; width: 4%; background: #fff;}

 .o2 { height: 4%; width: 4%; background: #000;}.l1 { height:

4%; width: 4%; background: #000;}

 .x5 { height: 4%; width: 4%; background: #fff;}@media print

{body {-webkit-print-color-adjust: exact;}

 .h { display:block;}.l1 { height: 4%; width: 4%; background:

#000;}.x5 { height: 4%; width: 4%; background: #000;}}

 </style>

If you erase the CSS Element “@media”-element, the “NO”-Label will disappear and you got the

solution:

Challenge 3 - Lego Stego
The LXF-File is a normal ZIP File. If you unpack the zip file you will get a PNG File and a LXFML-File.

The last one is a normal XML file. On line 4 you will see, which program used this format:

<Application name="LEGO Digital Designer" versionMajor="4" versionMinor="2"/>

Go and download the LEGO Digital Designer and load the LXF file in it. If you look from the site you

will notice, that there are 3 layers.

Erase the third layer and all the stones above and you will see the QR-Code

Challenge 4 - Twisted Num63rs
In this Challenge you should sort the values in ascending order. Here are the converted values, in

ascending order:

Original Converted

sqrt(1296) 36

Pi ^ Pi 36,46215

ZmlmdHk= 50

Middle C [Hz] 261.6

10101111000 1.400

303240 (oktal) 100.000

2 ^ 20 1.048.576

13 MiB [bytes] 13.631.488

Speed of Light [m/s] 299.792.458

127.0.0.1 as Integer 2.130.706.433

java.lang.Integer.MAX_VALUE 2.147.483.647

8 YiB[bytes] 9.671.406.556.917.033.397.649.408

Challenge 5 - Phone Fumbling
After a while it was easy to realizing that the bars are influenced by the following things:

 Bar1: time (only one minute or so)

 Bar2: gyroscope (play with your smartphone, that you get the right direction)

 Bar3: gyroscope (play with your smartphone, that you get the right direction)

 Bar4: battery / charging value

Challenge 6 - Hack to the Future
The following message is written in Morse-code

"dah-dah-dit dit dah-dah-dah di-dah-dit dah-dah-dit dit dah-dah dah-di-dah-dit di-di-dah-dit di-dah-

di-dit dah-di-dah-dah"

Decoded it is the solution code: “georgemcfly”

Wait we are to early. Set the local time 3 months later and we get the solution.

Challenge 7 - Vista de la Calle
On the iPhone the Challenge was broken and with the fix you are already on the right map. Look in

the sky and you will see the QR-Code. The only thing you need is to make a border with the same

color. Something like this:

Challenge 8
To get to the spreadsheet you need a link from an other spreadsheet, so that you can replace the ID:

The general link looks like this: https://docs.google.com/spreadsheets/d/[ID]/edit?usp=sharing

So the original Link is the following:

https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx_HVXWrRXDvwCnVX2ih0jYp1CA/ed

it?usp=sharing

Open the spreadsheet in excel and sort the top values in line 1 in ascending order:

Now make a filter over A-Z and sort the column in ascending order. And now the QR-Code appear:

https://docs.google.com/spreadsheets/d/%5bID%5d/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx_HVXWrRXDvwCnVX2ih0jYp1CA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1QPkfrnSVRAhQKL7AZx_HVXWrRXDvwCnVX2ih0jYp1CA/edit?usp=sharing

Challenge 9 – Fisheye
If you start the hackyeaster app, right at the beginning you will see the egg number 9. Make a

screenshot or something like this. You can also unpack the apk to get the image.

I used in GIMP the Whirl and Pinch Filter to get some results:

Challenge 10 - Thumper's Den
After I realized, that I am able to look at the baskets of our players, I came up with the idea to look

into Thumpers basket to:

http://hackyeaster.hacking-lab.com/hackyeaster/eggs.html?name=Thumper

http://hackyeaster.hacking-lab.com/hackyeaster/eggs.html?name=Thumper

Challenge 11 - You've got Mail
Extract the zip file and open the inbox file with a text-editor

On line 311 you will see the beginning of the attachment:

--047d7b4501642dc6f905043957bd--

--047d7b4501642dc6fe05043957bf

Content-Type: application/zip; name="signature.zip"

Content-Disposition: attachment; filename="signature.zip"

Content-Transfer-Encoding: base64

X-Attachment-Id: f_i0o7q80j0

UEsDBBQAAAAIAJ2iMUVXUT5FQfwAAJP9AAAKAAAAZWdnXzExLnBuZ3xYdzQbXhuuKmoU

1apNW7PU

VlSM+qm9WrR+paFq7y2IUbX3rhqhpShae0fsvfdKImLWSGImCPH1+/8733vO/ePec+57

znvPc5/n

ed/YVwaad2jYaW7cuHFHW+ul0Y0bN7H/XbfJ/57091if3bhBfuOVnon63+35ERq92rOx

PoBYqD46

gG9sDJ6erB4dIE+O0Qe45Y6OBPzJGv50vb8/k3C61t+X3tOdjEI0w5eqr6+v/16/XqPp

+UXVU0zX

[…]

Save the base64-block in a separate file. The following command in Unix will help you, to decode the

base64 block in the zip file:

“base64 -i -d base64encoded > signature.zip”

After extracting the zip you will get the image:

Challenge 12 - This is just a Test
The test form is really bad designed. The answers of the test are the following:

Question 1

What is the name of the popular port scanner, implemented by Fyodor?

Answer: nmap

Question 2

In the context of PKI systems, the shorthand "CRL" stands for "certificate __________ list".

Answer: revocation

Question 3

A group of 100 people plans to use symmetric encryption for secure communication. How many keys

are needed to let everybody communicate with each other?

Answer: 4950

Question 4

Which hash sizes are supported by the SHA2 family? Choose two!

384 bit and 512 bit

Question 5

Which port number is used by Kerberos?

Answer: 88

Also you have the hidden field success, which is always false. Manipulate the request and send it with

HttpRequester or something like this to the ceh site:

In the image above you see the image URL of the solution egg:

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_12_an8snbui1FeLO3Ugw89N.png

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_12_an8snbui1FeLO3Ugw89N.png

Challenge 13
First I converted the MP4 into images.

ffmpeg -i leety.mp4 -r 1.0 leet%4d.jpg

After I got all the images (901 images) I decided to scan some Images from 450 (middle point of 900)

up to 550 manually. I think image 525 was the right one and I got some points 

Challenge 14 - Wise Rabbit's Return

The read the barcode with the following Website: http://www.onlinebarcodereader.com/de.html

The decoded barcode was "yckgKB2iV1rvNEfCoNiR".

This decoded content must be now converted in a QR-Code. I do this with the following site:

http://goqr.me/de/

If you scan the created QR-Code you got the points.

http://www.onlinebarcodereader.com/de.html
http://goqr.me/de/

Challenge 15 - Photo Shooting
This Challenge was a little bit crazy. The first way to solve was, take a photo of some tomatoes (most

of the screen should be tomato red) and take a photo of a grassland (most of the screen should be a

special green color). After this I got the following results:

The Second way was, unpack the APK-File from the hackyeaster app. You can download the apk file

with evozi’s downloader: http://apps.evozi.com/apk-downloader/

After unpacking open the ressources.asrc and you will find some interesting values.

 From the Null-Byte and “É`É`” to the next Null-Byte is a double base64 encoded Image, which is the

QR-Code of this challenge.

http://apps.evozi.com/apk-downloader/

Funny fact, I solved the challenge the second way and didn’t noticed it. After a while I flipped out,

because the QR-Code of the Images doesn’t worked. I looked into my basket and saw that the

challenge was solved some hours ago :D

Decoded Image of the double-encoded base64 string

Challenge 16 - Ghost Room
In the Challenge Overview there is in the right bottom corner a light bulb which turns the light of:

When we turned off the light, we can go to the main part of the challenge:

There is a good hint. It is the GOST-Encryption. The password is “spooky”. I found an online decoder

here: http://www.tools4noobs.com/online_tools/decrypt/

Encrypted Text:

d5++xytj6RiGwmqEecm63Kow7RZGAAHh

VFsksHFuj/Anap7pWHDZ1XQw8DAApUEN

R5ExOGUKTzGOtvSAlCHkHq6NneL6ZUTX

ej8Taxz+kHK9w9U8dxTOSksZ4HKS2YYD

Key: spooky

Decrypted Text: http://hackyeaster.hacking-

lab.com/hackyeaster/images/egg_16_a3eIIACKSy02sJ6LxXeh.png

And now we have our next solution 

http://www.tools4noobs.com/online_tools/decrypt/
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_16_a3eIIACKSy02sJ6LxXeh.png
http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_16_a3eIIACKSy02sJ6LxXeh.png

Challenge 17 - Spot the Difference
We got two images:

To get the difference, we play a little bit with the awesome stegano tool “Stegsolve” from Caesum. In

this Java-Tool you find the Image-Combiner. First load the difference1.bmp in to the tool and chose

the image-combiner with the difference2.bmp:

Save the image and look Mr. “Agent XOR” in the eyes:

That is not a real QR-Code, but when you compare the right eye, with the left you will notice that

some Pixels in the QR-Code are inverted like the right eye. Invert all Pixels in the white area and you

get the right QR-Code. See the pictures to understand, I don’t know how to describe it in better

English 

Broken QR-Code Left eye + overlay of right eye

Invert all pixels in white area

Solution 

Challenge 18 - Sharks on the Wire
Download the pcap file and follow the last TCP-Stream (Wireshark Filter: “tcp.stream eq 3”). You will

find really fast the Header with the Basic-Authorization:

GET /hackyeaster/sharks/sharks.css HTTP/1.1

Host: 10.11.0.48:8080

Connection: keep-alive

Authorization: Basic c2hhcmttYW46c2hhcmtzX2hhdmVfajR3cw==

Accept: text/css,*/*;q=0.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36

Referer: http://10.11.0.48:8080/hackyeaster/sharks/sharks.html

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;q=0.8,de;q=0.6,it;q=0.4

Decode the Authorization Part with base64 and you get the username:password

“sharkman:sharks_have_j4ws”

Now we can Login in and look at the website with another login-panel. The last header in the TCP

Stream looks like this:

POST /hackyeaster/sharks/auth HTTP/1.1

Host: 10.11.0.48:8080

Connection: keep-alive

Content-Length: 82

Cache-Control: max-age=0

Authorization: Basic c2hhcmttYW46c2hhcmtzX2hhdmVfajR3cw==

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*

;q=0.8

Origin: http://10.11.0.48:8080

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36

Content-Type: application/x-www-form-urlencoded

Referer: http://10.11.0.48:8080/hackyeaster/sharks/sharks.html

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.8,de;q=0.6,it;q=0.4

user=supershark&pass=hashed%21%21%21&hash=b3f3ca462d3fa58b74d6982af1

4d8841b074994a

 We see user supershark logging in with the hash b3f3ca462d3fa58b74d6982af14d8841b074994a.

You don’t to crack this, because you need only the hash (Pass the Hash-Attack). I manipulate the

POST-Request with Tamper-Data:

After sending the POST-Request, we got the solution:

Challenge 19 - Cut'n'Place
On this challenge, the biggest hint was that it is a passphrase and not a password. A passphrase is

something like 20-40 Characters long. And now it is time for paper and scissors. Print the pdf and

play a little bit with the stripes. After a while I come up with the idea, that I weave the paper:

The Solution was: paperstripsmadebyshredder

Awesome Challenge and the last one I finished 

Challenge 20 - Lots of Bots
"Robots have placed an egg on this web server. If you wanna find it, you need to think and act like a

bot. "

OK, let’s have a look at robots.txt:

User-agent: EasterBot

Disallow: /

Allow: /hackyeaster/bots/bots.

User-agent: *

Disallow: /

The only thing you must add is “html”. So we got the following site:

http://hackyeaster.hacking-lab.com/hackyeaster/bots/bots.html

Oh I forgot to tell you, that you must deactivate JavaScript. Otherwise you will land on a Wikipedia

article of some famous bots 

“BAMA WABOKI PISAL FATATU FOMU WOSEBI SEJU SOWU SEJU - BAMAS MUFE WAFUB FOMU

MOWEWE"

After some research in google I found out, that the language is ROILA, the Robot Interaction

Language. The translated text is the following:

"you must make word of addition two and two - this be name of page"

Two plus two is four. So maybe we should try http://hackyeaster.hacking-

lab.com/hackyeaster/bots/four.html

http://hackyeaster.hacking-lab.com/hackyeaster/bots/bots.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/four.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/four.html

OK let’s have a look at the META-DATA.

<meta name="description" content="Robots talk in ROILA language:

eman egap eht esrever tsum">

<meta name="keywords" content="secret, page, robots, fun, hacky

easter, blrt, five, beep">

“eman egap eht esrever tsum” that is not ROILA. If you try to read backwards you get “must reverse

the page name”.

Reversing four is ruof and this is the site: http://hackyeaster.hacking-

lab.com/hackyeaster/bots/ruof.html

http://hackyeaster.hacking-lab.com/hackyeaster/bots/ruof.html
http://hackyeaster.hacking-lab.com/hackyeaster/bots/ruof.html

Challenge 21 - Cony Code
The hint tells us everything:

“Hint: 110 is blue, the rest's up to you...”

First at all I counted all colors:

1. White

2. Red

3. Pink

4. Black

5. Yellow

6. Blue

7. Light blue

8. Light green

Eight different colors! Fits perfectly in 3 bits. After this I came up with the idea of RGB, because all

colors in the cony-code are special colors in RGB.

RGB

110 - BLUE

You see, 1 means off and 0 means on. So my theory was red must be 011 and green must be 101. If

you going on, you get the following binary table:

RGB

110 - Blue

011 - Red

101 - Green

001 - Yellow

010 - Pink (Light Red)

000 - White

111 - Black

100 - Light Blue

Now you have the cony-code image. Replace the colors with the binary value. Read it line by line

from left to right.

Now you will get the following binary code:

011010000111010001110100011100000011101000101111001011110110100001100001011000110

110101101111001011001010110000101110011011101000110010101110010001011100110100001

100001011000110110101101101001011011100110011100101101011011000110000101100010001

011100110001101101111011011010010111101101000011000010110001101101011011110010110

010101100001011100110111010001100101011100100010111101101001011011010110000101100

111011001010111001100101111011001010110011101100111010111110011001000110001010111

110110101000110111011001110011011000110111010110100010111001110000011011100110011

100100000111111111111

If you converted this binary code to text you get the following output:

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_21_j7g67Z.png ÿ��

And there is our solution.

http://hackyeaster.hacking-lab.com/hackyeaster/images/egg_21_j7g67Z.png

Challenge 22 - Hashes to Ashes
If you are familiar with hashcat, the task should be not a problem for you. I used cuda-hashcat on

windows for the following commands:

Hash: ADA2EEEBE7809857A57F6FEE4B2FFAEE24EAE7B1 (SHA1)

Command: cudaHashcat64 -m 100 -a 3 -o cracked.txt hashes.txt -1 1234567890

?1?1?1?1?1?1?1?1?1?1?1

Solution: 1199019170177790

Hash:

6BBF7528D9DD2959A7AFB37898425F67555F67F677987CAE7E86210A2C8A0DBDFC248EC2D7B2401

0F440BADC2223B4B5 (SHA512)

Command: cudaHashcat64 -m 1700 -a 3 -o cracked.txt hashes.txt -1 abcdefghijklmnopqrstuvwxyz

?1?1?1?1?1?1?1?1?1?1?1?1

Solution: hopelessly

Hash: B80814C5E0F386B0637163FD8AFEA929 (MD5)

Command: cudaHashcat64 -m 0 -o cracked.txt -r hackyeaster_upper.rule -r hackyeaster_subst.rule

hashes.txt wordlist.txt ?s?d

hackyeaster_subst.rule:

sa@,sb8,sc(,sd6,se3,sf#,sg9,sh#,si!,si1,sk<,sli,sl1,so0,sq9,ss5,ss&,st+,sv>,sv<,sx%,

(Attention, replace the comma with a line break)

hackyeaster_upper.rule : T0,T1,T2,T3,T4,T5,T6,T7,T8,T9,TA,TB,TC,TD,TE,TF

(Attention, replace the comma with a line break)

Solution: Disc0very.5

Before I got to the last one, I created some custom dictionaries. The first one was that all words are

lowercase (wordlist_lower.txt). After this I used the “prince processor” from hashcat, that I can

merge the dictionaries:

pp64 -o wordlist_lower_doubleword.txt --elem-cnt-max=2 <

wordlist_lower.txt

This dictionary contains all words in lower case and also a mix, that are all words are combined with

each other. With this wordlist I am able to combine all passwords up to 4 times 

Hash: 9791CBE0AE919A0330994A2D6BA26B8F0C3A1DA15C73BCE5FCA39495881A6C90 (SHA256)

Command: cudaHashcat64 -m 1400 -a 1 -o cracked-txt hashes.txt wordlist_lower_doubleword.txt

wordlist_lower_doubleword.txt

Solution: enginebulbgoatimportant

Sadly most of the passwords appears on google after some time. So to solve most of them you only

need google, but this way is the better way to learn how hashcat works.

Challenge 23 - Beat the Nerd Master
This was my favorite challenge. Old school Monkey Islands fights, with nerd questions and answers. I

write a little python script to beat the nerd master:

#!/usr/bin/env python

import socket

questions=[]

questions.append("Go 127.0.0.1 to your mummy.")

questions.append("Go play with your toys, yellow-belly.")

questions.append("I have more friends than you.")

questions.append("This fight is like a hash function - it works in one

direction only.")

questions.append("You should leave your cave and socialize a bit.")

questions.append("You'll be 0xdeadbeef soon.")

questions.append("Af7ter th1s f1gh7, I w1ll pwn ur b0x3n.")

questions.append("I bet you don't even understand binary.")

questions.append("You must be jealous when seeing my phone's display.")

questions.append("format C:")

answers=[]

answers.append("Won't work. I only support IPv6.")

answers.append("That's not even close to be nerdy!")

answers.append("Yeah, but only until you update your Facebook profile with

a real picture of you!")

answers.append("Too bad you picked LM hashing.")

answers.append("I'm not anti-social. I'm just not user friendly.")

answers.append("Not as long as I have my 0xcafebabe.")

answers.append("Check your settings - you seem to have chosen the Klingon

keyboard layout.")

answers.append("Sure I do. Me and you, we are 10 different kind of

persons.")

answers.append("Not really - Your pixels are so big, some of them have

their own region code!")

answers.append("Specified drive does not exist.")

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(('hackyeaster.hacking-lab.com', 1400))

data=""

while data == "":

 data = s.recv(1024)

print data

send = "y\r\n"

s.send(send)

while data == "":

 data = s.recv(4096)

print data

data=""

while data == "":

 data = s.recv(4096)

print data

send = questions[9].join("\r\n")

print send

s.send(send)

data=""

while data == "":

 data = s.recv(4096)

print data

data=""

while data == "":

 data = s.recv(4096)

print data

s.close()

Challenge 24 - SHAM Hash
Everything is described in the PDF File. I write a little bruteforce programm in C#. I used also a C#

implementation of HashLib. The Main Idea is, that this encryption only have a protection of 6x6

character password. Cracking 6 different 6 character long passwords is not so complicated:

 void attack(int beginsix, int steps)

 {

 string brutestring = "abcdefghijklmnopqrstuvwxyz1234567890!?";

 string test = "hackyeaster2015isforeveryone!!";

 string brutinhash = "757c479895d6845b2b0530cd9a2b11";

 steps = (steps == -1)?brutestring.Length-beginsix:steps;

 string[] splitter = new string[5];

 string[] hashsplitter = new string[5];

 for (int i = 0; i < splitter.Length; i++) {

 splitter[i] = test.Substring(i*6,6);

 hashsplitter[i] = brutinhash.ToUpper().Substring(i*6,6);

 }

 IHash MD2 = HashFactory.Crypto.CreateMD2();

 IHash MD5 = HashFactory.Crypto.CreateMD5();

 IHash SHA1 = HashFactory.Crypto.CreateSHA1();

 IHash SHA256 = HashFactory.Crypto.CreateSHA256();

 IHash SHA512 = HashFactory.Crypto.CreateSHA512();

 string lolo="";

 HashResult r = MD2.ComputeString(splitter[0], Encoding.ASCII);

 lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(0,6);

 r = MD5.ComputeString(splitter[1], Encoding.ASCII);

 lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(6,6);

 r = SHA1.ComputeString(splitter[2], Encoding.ASCII);

 lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(12,6);

 r = SHA256.ComputeString(splitter[3], Encoding.ASCII);

 lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(18,6);

 r = SHA512.ComputeString(splitter[4], Encoding.ASCII);

 lolo += BitConverter.ToString(r.GetBytes()).Replace("-","").Substring(24,6);

 int[] char_counter_arr = {beginsix,0,0,0,0,0};

 bool[] notcracked = {true,true,true,true,true};

 string temp = "";

 string answer = "";

 while (char_counter_arr[0] < beginsix+steps) {

 string word = "" +

 brutestring[char_counter_arr[0]] +

 brutestring[char_counter_arr[1]] +

 brutestring[char_counter_arr[2]] +

 brutestring[char_counter_arr[3]] +

 brutestring[char_counter_arr[4]] +

 brutestring[char_counter_arr[5]];

 if (notcracked[0]) {

 r = MD2.ComputeString(word, Encoding.ASCII);

 temp = BitConverter.ToString(r.GetBytes()).Replace("-","");

 if (temp.Substring(0,6) == hashsplitter[0]) {

 answer += "MD2: " + word + "\r\n";

 notcracked[0] = false;

 }

 }

 if (notcracked[1]) {

 r = MD5.ComputeString(word, Encoding.ASCII);

 temp = BitConverter.ToString(r.GetBytes()).Replace("-","");

 if (temp.Substring(6,6) == hashsplitter[1]) {

 answer += "MD5: " + word + "\r\n";

 notcracked[1] = false;

 }

 }

 if (notcracked[2]) {

 r = SHA1.ComputeString(word, Encoding.ASCII);

 temp = BitConverter.ToString(r.GetBytes()).Replace("-","");

 if (temp.Substring(12,6) == hashsplitter[2]) {

 answer += "SHA1: " + word + "\r\n";

 notcracked[2] = false;

 }

 }

 if (notcracked[3]) {

 r = SHA256.ComputeString(word, Encoding.ASCII);

 temp = BitConverter.ToString(r.GetBytes()).Replace("-","");

 if (temp.Substring(18,6) == hashsplitter[3]) {

 answer += "SHA256: " + word + "\r\n";

 notcracked[3] = false;

 }

 }

 if (notcracked[4]) {

 r = SHA512.ComputeString(word, Encoding.ASCII);

 temp = BitConverter.ToString(r.GetBytes()).Replace("-","");

 if (temp.Substring(24,6) == hashsplitter[4]) {

 answer += "SHA512: " + word + "\r\n";

 notcracked[4] = false;

 }

 }

 char_counter_arr[5]++;

 if (char_counter_arr[5] == brutestring.Length) {

 char_counter_arr[5]=0;

 char_counter_arr[4]++;

 }

 if (char_counter_arr[4] == brutestring.Length) {

 char_counter_arr[4]=0;

 char_counter_arr[3]++;

 }

 if (char_counter_arr[3] == brutestring.Length) {

 char_counter_arr[3]=0;

 char_counter_arr[2]++;

 }

 if (char_counter_arr[2] == brutestring.Length) {

 char_counter_arr[2]=0;

 char_counter_arr[1]++;

 }

 if (char_counter_arr[1] == brutestring.Length) {

 char_counter_arr[1]=0;

 char_counter_arr[0]++;

 }

 }

 MethodInvoker inv = delegate{txt_debug.Text += answer + "\r\nbeginsix " + beginsix + "

done";};

 this.Invoke(inv);

 }

The Code is really dirty. But I got with it the following solution with it:

I took the first password: “5cp7iq5cy1dl5cv9915r0mbz5aapaw”

Challenge 25 - Jad & Ida
Unpack the ZIP file and analyze the JadAndIda.class file with JD-GUI. You will find on line 43 the

following code:

So you see, the program does something with your input and if the result is "v3O] pmWm<Y(0=21"

you solved the challenge. Export the source code and try to compile it with your own code. I added

the following line between line 47 & 48 “System.out.println(h);”, to see how the string is

changed after the fizzle rizzle shizzle bizzle.

The „Erg“ stands for “Ergebnis”. That is the German word for solution.

As you see I only change the first letter, and only the first letter changed after the fizzle rizzle shizzle

bizzle. The same thing happened with every other character. If you change the second character only

the second character in the encryption will change. With this information, we know that we can easy

bruteforce the password. I added the following code:

The idea is, when I found the right character, the bruteforce can jump to the next letter 

After compiling this code, I got the following output:

Now we have the password: jadnIdal0vecod3n and the s3cr3t.bin will be decrypted in an image file:

Challenge 26 - Clumsy Cloud
First let’s have a look into this Backup file http://hackyeaster.hacking-

lab.com/hackyeaster/files/passphrase_backup.txt :

{

 "name" : "Clumsy Cloud Backup",

 "comment" : "Backup of your passphrase, protected with your secret

PIN.",

 "params" : {

 "s" : "ovaederecumsale",

 "h" : "1.3.14.3.2.26",

 "i" : 10000,

 "k" : 128,

 "e" : "2.16.840.1.101.3.4.1.1",

 "p" : "8QeNdEdkspV6+1I77SEEEF4aWs5dl/auahJ46MMufkg="

 }

}

After some research on google you will found out that "1.3.14.3.2.26" is the OID of SHA1 and

"2.16.840.1.101.3.4.1.1" is the OID of AES128-ECB. So the Clumsy Cloud have something to do with

SHA1 and AES128 in ECB mode.

In the second step we look into the APK File. Download the Hackyeaster APK file. You can download

it with Evozi’s downloader: http://apps.evozi.com/apk-downloader/

Decompile the apk with dex2jar and open the jar file with jd-gui. After some searching I found out,

that the Activity class has our main functions for clumsy cloud:

http://hackyeaster.hacking-lab.com/hackyeaster/files/passphrase_backup.txt
http://hackyeaster.hacking-lab.com/hackyeaster/files/passphrase_backup.txt
http://apps.evozi.com/apk-downloader/

We also have a function with some SHA1 encoding:

This seems to be the main functions of clumsy cloud. We only need to implement this two functions

and try to get the right pin. We have a pin with 4 digits. This mean, we are able to bruteforce the pin.

I exported the two functions and rewrite them, so they are able to run in Java. Additionally I needed

the javax-crypto.jar. You can download it from here:

http://www.java2s.com/Code/Jar/j/Downloadjavaxcryptojar.htm

Here are my source code:

import java.io.Console;

import java.io.PrintStream;

import java.security.MessageDigest;

import java.security.*;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import javax.xml.bind.DatatypeConverter;

import javax.crypto.Cipher;

import javax.crypto.spec.SecretKeySpec;

import javax.crypto.spec.*;

import javax.crypto.*;

public class something

{

 public static void main(String[] paramArrayOfString)

 {

 for(int i=0; i<10000; i++){

 String paramString = String.format("%04d", i);

 try

 {

 String somebase64 =

"8QeNdEdkspV6+1I77SEEEF4aWs5dl/auahJ46MMufkg=";

 SecretKeySpec localSecretKeySpec = new

SecretKeySpec(a(paramString, "ovaederecumsale", 10000), "AES");

 Cipher localCipher = Cipher.getInstance("AES");

 localCipher.init(2, localSecretKeySpec);

http://www.java2s.com/Code/Jar/j/Downloadjavaxcryptojar.htm

 String str = new

String(localCipher.doFinal(DatatypeConverter.parseBase64Binary(someb

ase64)));

 System.out.println(paramString);

 System.out.println(str);

 }

 catch (NoSuchAlgorithmException localException) {}

 catch (NoSuchPaddingException nopad){ }

 catch (IllegalBlockSizeException blockshit) { }

 catch (BadPaddingException badpaddd) { }

 catch (InvalidKeyException invkey) { }

 }//END FOR

}//END FUNCTION

private static byte[] a(String paramString1, String paramString2,

int paramInt) throws NoSuchAlgorithmException

 {

 try{

 MessageDigest localMessageDigest =

MessageDigest.getInstance("SHA1");

 byte[] arrayOfByte1 = (paramString2 + paramString1).getBytes();

 for (int n = 0;; n++)

 {

 if (n >= paramInt)

 {

 byte[] arrayOfByte2 = new byte[16];

 System.arraycopy(arrayOfByte1, 0, arrayOfByte2, 0, 15);

 return arrayOfByte2;

 }

 arrayOfByte1 = localMessageDigest.digest(arrayOfByte1);

 }

 }catch(NoSuchAlgorithmException someshit){

 System.out.println(someshit.toString());

 byte[] als = new byte[1];

 return als;

 }

 }

}

Also quick and dirty. After starting the java application I got something like this:

The PIN 7113 seems to be the right PIN and we got the egg:

Challenge 27 - Too Many Time Pad
Using a One Time Pad with the same key is a bad thing. For solving this Challenge I used the following

python scripts from SpiederLabs: https://github.com/SpiderLabs/cribdrag

The first step is, to XOR two intercepted Messages of your choice. For message 5 and 4 it is the

following command:
python xorstrings.py 71c26929e96931698e2865d816d3624b687cd6

6c8a7b6ce06a3161dd6a60d755d42d4d6d67

Now we get the XORed Hex-string 1d481245090300085342050f43074f06051b

python cribdrag.py 1d481245090300085342050f43074f06051b

We try to enter some random well known English words like “the” “at” or something like this:

Bit by bit I was able to decrypt the messages:

60c46964f83879618e2878de539f6f4a6271d716 //20chars

 enemy hase the bonbon

63c37a6ca177792092602cc553c9684b //16chars

 five oh oh seven

68d82c6bf4767f79dd617f9642d768057f63c1 //19chars

 mr bunny is the spy

6c8a7b6ce06a3161dd6a60d755d42d4d6d67 //18chars

 i wear a black hat

71c26929e96931698e2865d816d3624b687cd6 //19chars

 the hq is in london

6cda6d6df87764709c6c7bd357d361556d77 //18chars

 ipadyoupadweallpad

And the last message is our solution:

https://github.com/SpiderLabs/cribdrag

